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Abstract

Private messaging over the Internet has proven challenging to
implement, because even if message data is encrypted, it is
difficult to hide metadata about who is communicating in the
face of traffic analysis. Systems that offer strong privacy guar-
antees, such as Dissent [36], scale to only several thousand
clients, because they use techniques with superlinear cost in
the number of clients (e.g., each client broadcasts their mes-
sage to all other clients). On the other hand, scalable systems,
such as Tor, do not protect against traffic analysis, making
them ineffective in an era of pervasive network monitoring.
Vuvuzela is a new scalable messaging system that offers
strong privacy guarantees, hiding both message data and meta-
data. Vuvuzela is secure against adversaries that observe and
tamper with all network traffic, and that control all nodes ex-
cept for one server. Vuvuzela’s key insight is to minimize
the number of variables observable by an attacker, and to use
differential privacy techniques to add noise to all observable
variables in a way that provably hides information about which
users are communicating. Vuvuzela has a linear cost in the
number of clients, and experiments show that it can achieve a
throughput of 68,000 messages per second for 1 million users
with a 37-second end-to-end latency on commodity servers.

1 Introduction

Many users would like their communications over the Internet
to be private, and for some, such as reporters, lawyers, or
whistleblowers, privacy is of paramount concern. Encryption
software can hide the content of messages, but adversaries
can still learn a lot from metadata—which users are com-
municating, at what times they communicate, and so on—by
observing message headers or performing traffic analysis. For
example, if Bob repeatedly emails a therapist, an adversary
might reasonably infer that he is a patient, or if a reporter is
communicating with a government employee, that employee
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might come under suspicion. Recently, officials at the NSA
have even stated that “if you have enough metadata you don’t
really need content” [33: {[7] and that “we kill people based
on metadata” [23]. This suggests that protecting metadata in
communication is critical to achieving privacy.

Unfortunately, state-of-the-art private messaging systems
are unable to protect metadata for large numbers of users. Ex-
isting work falls into two broad categories. On the one hand
are systems that provide strong, provable privacy guarantees,
such as Dissent [36] and Riposte [12]. Although these sys-
tems can protect metadata, they either rely on broadcasting
all messages to all users, or use computationally expensive
cryptographic constructions such as Private Information Re-
trieval (PIR) to trade off computation for bandwidth [34]. As
a result, these systems have scaled to just 5,000 users [36] or
hundreds of messages per second [12].

On the other hand, scalable systems like Tor [16] and
mixnets [9] provide little protection against powerful adver-
saries that can observe and tamper with network traffic. These
systems require a large number of users to provide any degree
of privacy, so as to increase the anonymity set for each user,
but even then are susceptible to traffic analysis. Adding cover
traffic to try to obscure which pairs of users are communicating
has been shown to be expensive and to yield only limited pro-
tection against a passive adversary over time [14, 26], while
adversaries that can actively disrupt traffic (e.g., inject delays)
gain even more information [1].

This paper presents Vuvuzela, a system that provides scal-
able private point-to-point text messaging. Vuvuzela prevents
an adversary from learning which pairs of users are communi-
cating, as long as just one out of N servers is not compromised,
even for users who continue to use Vuvuzela for years.! Vu-
vuzela uses only simple, fast cryptographic primitives, and,
using commodity servers, can scale to millions of users and
tens of thousands of messages per second. At the same time,
Vuvuzela can provide guarantees at a small scale, without the
need for a large anonymity set: even if just two users are using
the system, an adversary will not be able to tell whether the
two users are talking to each other.

Vuvuzela works by routing user messages through a chain
of servers, as shown in Figure 1, where each of the servers
adds cover traffic to mask the communication patterns of users.
Unlike prior systems, Vuvuzela’s design enables cover traffic

"Vuvuzela cannot hide the fact that a user is connected to Vuvuzela’s
network, but we expect that users will simply run the Vuvuzela client in the
background at all times to avoid revealing the timing of their conversations.
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Figure 1: Vuvuzela’s overall architecture. The Vuvuzela network consists of
a chain of servers, at least one of which is assumed to be trustworthy.

to scale to millions of users, and allows us to prove strong
guarantees about the level of privacy provided by cover traffic.
We achieve this using two key techniques.

First, Vuvuzela’s protocols are carefully structured to reveal
only a small, well-defined set of observable variables to an
adversary. For instance, Vuvuzela’s conversation protocol,
used for sending messages, exposes just two variables: the
total number of users engaged in a conversation, and the total
number of users not engaged in one. It does not reveal which
users are in each group. This is significantly smaller than the
number of variables exposed by previous systems, and enables
Vuvuzela to focus on minimizing the useful information that
an adversary can learn from these variables.

Second, Vuvuzela adopts ideas from differential pri-
vacy [18] to state precise privacy guarantees, and to bound
information leakage over time by adding noise to the observ-
able variables with cover traffic. Vuvuzela ensures that any
observation that an adversary can perform will be “almost
independent” of whether some user is active or not,2 which
means that the adversary cannot learn who, if anyone, a user
is talking to. Somewhat counter-intuitively, results from differ-
ential privacy show that the amount of cover traffic needed is
constant—independent of the number of users—and we find
that the amount is manageable in practice. Adding noise to
achieve differential privacy is tractable for the small number
of variables exposed by Vuvuzela, but it was not feasible for
prior systems that expose many distinct variables.

Vuvuzela’s design applies these techniques to build a com-
plete messaging system that uses two protocols: an efficient
point-to-point conversation protocol, for exchanging messages
between users that have agreed to communicate, and a more
expensive dialing protocol for starting conversations.

Vuvuzela’s privacy guarantees are expressed in terms of
differential privacy, which can be thought of as “plausible
deniability.” Each time a user sends a message in Vuvuzela,
an adversary may be able to infer a small amount of statistical
information—e.g., based on what the adversary observed, it
seems a bit more likely that Alice and Bob were talking. How-
ever, Vuvuzela ensures that even the total information, over
many messages exchanged by a user, still provides a strong
level of differential privacy. For instance, our typical configu-
ration ensures that, for a user who sends and receives 200,000

2More precisely, the probability of an observation when the user is active
is at most e€ times the probability of the same observation when the user is
inactive plus §, for some small € and 6.
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messages, the adversary’s confidence about any given suspi-
cion (e.g., whether Alice and Bob are talking) remains within
2x of what it was before the adversary monitored Vuvuzela.

To evaluate Vuvuzela, we implemented a prototype in Go
on several commodity servers (36-core VMs on EC2). Results
show that Vuvuzela can support 1 million users exchanging
text messages (up to 240 bytes each) with an end-to-end la-
tency of 37 seconds, achieving a throughput of 68,000 mes-
sages/sec, with the privacy level described in the previous
paragraph. The cover traffic needed for this level of privacy is
equivalent to about 1.2 million active users. More importantly,
the cover traffic is independent of the number of active users,
which helps Vuvuzela scale up well. For instance, scaling up
to 2 million users increases the latency from 37 to 55 seconds.

Vuvuzela’s results come at a non-trivial bandwidth cost. In
the above configuration, clients use an average of 12 KB/sec
(adding up to 30 GB over a month of continuous use, which
may be high for a mobile phone with metered data service).
Servers use an average of 166 MB/sec, and Vuvuzela also
requires an untrusted CDN or BitTorrent-like system to dis-
tribute public dialing information to users (12 KB/sec per user,
or 12 GB/sec in aggregate). Nonetheless, Vuvuzela is the first
system to achieve private communication at this scale.

In summary, the contributions of this paper are:

e A new approach to hiding metadata in messaging systems,
by minimizing the number of observable variables and
applying differential privacy techniques.

o The design of Vuvuzela, the first private messaging system
that can hide metadata while scaling to 2 million conversing
users (which is about 100x higher than prior systems).

e An analysis of the privacy provided by Vuvuzela and an
evaluation of Vuvuzela’s performance and scalability.

2 Motivation and Goals

Vuvuzela aims to provide point-to-point messaging between
users in a way that is private in the face of a strong adversary,
who can observe and tamper with the entire network and all
but one of Vuvuzela’s servers. That is, an adversary should not
be able to distinguish between a scenario where two particular
users are communicating, and a scenario where they are not,
even after interfering with the system. This section lays out
the motivation for Vuvuzela and its security properties.
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To get a better sense of why privacy is hard to provide under
Vuvuzela’s strong adversary model, consider a system with
only one server, which is fully trusted. Even in this system,
achieving privacy is nontrivial. For example, suppose that the
server operates in fixed rounds, and each round, it first collects
messages from all clients that wish to send one, and then sends
each message to its recipient. Although the adversary cannot
immediately tell which sender was responsible for a given
recipient’s message, he can still discover relevant information.

Motivation
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Figure 2: Vuvuzela’s security goal. An adversary must not be able to distin-
guish between various possible worlds. In one world, Alice is communicating
through Vuvuzela with Bob. In another, she is connected but not exchanging
messages with other users. In a third, she is communicating with Charlie.
Vuvuzela gives Alice differential privacy: any event observed by the adversary
has roughly equal probability in all worlds.

For instance, if the adversary suspects that Alice and Bob
are communicating, he can temporarily block network traffic
from Alice, and see whether Bob stops receiving messages.
Or, in our model of a strong adversary, he can block traffic
from all clients except for Alice and Bob, and see whether any
messages got exchanged when just they are online.

As discussed in §1, previous systems handle this problem
using mechanisms that limit scaling, such as broadcasting
all messages to all users [12, 36] or cryptographic schemes
like PIR [34]. As a result, these systems are limited to a few
thousand users or a few hundred messages per second.

In fact, due to the attacks above, any system that reveals
some information about the number of messages exchanged
is vulnerable to our adversary over many rounds, because
he can use attacks like blocking one of Alice and Bob and
seeing how that changes the number of exchanged messages.
Furthermore, in Vuvuzela, unlike in the simpler setting above,
we must protect not only against a network adversary but all
but one of the servers being compromised. Our security goals
take this into account to protect each user over many rounds.

2.2 Security goals

Informally, the security definition we want is the following:
for each user (call her Alice), the adversary should not be able
to distinguish between any of Alice’s possible communication
patterns, even after Alice exchanges many messages.

We make this definition precise using differential pri-
vacy [17], which can be thought of as a formalization of
“plausible deniability.” Differential privacy says that for any
observation O that the adversary might make of the system, the
probability of observing O should be similar regardless of Al-
ice’s communication pattern, as shown in Figure 2. Formally,
we define differential privacy for Vuvuzela as:

Definition 1. A randomized algorithm M is (g,0)-
differentially private for adjacent inputs x and y if, for all
sets of outcomes S, Pr[M(x) € S] < e® - Pr[M(y) € S] + 0.

In our case, inputs x and y are the user actions (i.e., which
users are communicating). We consider two inputs adjacent if
they differ only in the messages exchanged by one user (say,
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Alice).> One of the inputs represents the real actions taken
by Alice (e.g., that she exchanged messages with Bob), while
the other input represents Alice’s hypothetical “cover story,”
which is an alternative set of actions that Alice could claim to
have made, and which should appear almost as plausible as her
real actions (e.g., that she never communicated with anyone,
or that she exchanged messages with Charlie). The function
M represents the observations made by the adversary after he
performs whatever manipulation he wishes of the system.

Intuitively, the definition says that any set of observations
by an adversary (the payload of network packets, the state of
compromised servers, etc.) is almost as likely given Alice’s
real actions as it is given some cover story for Alice. As a
result, regardless of what the adversary suspects Alice is doing
(e.g., talking to a reporter from the Guardian), monitoring Vu-
vuzela provides only a limited improvement in the adversary’s
certainty of that suspicion (bounded by e® and 9).

Vuvuzela does not require users to explicitly specify a cover
story; rather, the definition says that all user actions (both real
and any possible “cover stories”) will look about the same to
an adversary. This covers all information that an adversary
might learn about Alice’s communications: not only whether
she’s talking to Bob, but whether she’s communicating at all
(or just running an idle client). This definition subsumes most
other privacy guarantees that Alice might want in practice: dis-
tinguishing whether she is talking to Bob or Charlie, whether
she has ever talked to a particular 100-person group, etc.

Vuvuzela operates in rounds during which each user can
send and receive one message. Despite hiding a lot of in-
formation, Vuvuzela does allow an adversary to learn some
information each round. Thus, the degree of privacy depends
on how many rounds Alice participated in—or, more precisely,
on the number of rounds in which her actions differ from her
potential cover stories. We discuss this in more detail in §6.
In practice, we usually configure Vuvuzela to provide € = In 2
and 6 = 10~ for 200,000 rounds, which means that even after
Alice exchanges 200,000 messages, an adversary should be-
lieve that the likelihood of Alice’s cover story is within 2Xx of
the likelihood of what she actually did (unless the adversary
gets lucky, with probability 10™#, and learns a bit more).

Vuvuzela cannot hide the fact that a user is connected to
the system. To limit the information disclosed by the fact that
Alice connects to Vuvuzela, we recommend that users run the
Vuvuzela client at all times. In principle, users are allowed
to connect at any time, but if this correlates with information
they are trying to hide, Vuvuzela cannot help. For instance, if
Alice and Bob always start their Vuvuzela clients before their
daily chat, and then promptly shut down their clients after, an
adversary could infer that they are talking. On the other hand,
if their Vuvuzela clients are running at all times, an adversary
cannot learn when or with whom they are talking.

3 As we describe in §4, when two users are communicating through Vu-
vuzela, each one is performing a message exchange, so it makes sense to talk
about the message exchanges of one user.



2.3 Threat model

Vuvuzela’s design assumes an adversary who controls all but
one of the Vuvuzela servers (users need not know which one),
controls an arbitrary number of clients, and can monitor, block,
delay, or inject traffic on any network link. Two users, Alice
and Bob, communicating through Vuvuzela should have their
communication protected if their two clients, and any one
server, are uncompromised. Since users will communicate
over multiple rounds, we assume that the adversary may also
monitor and interfere with them over multiple rounds.

Our cryptographic assumptions are standard. We assume
secure public and symmetric key encryption, key-exchange
mechanisms, signature schemes and hash functions. We also
assume that the Vuvuzela servers’ public keys are known to
all users, and that two users who wish to communicate know
each other’s public keys. Separate mechanisms are needed
to let users discover each other’s keys, but we consider these
orthogonal to the private communication problem in this paper,
which is difficult even with these assumptions.*

We further assume that honest Vuvuzela clients and servers
faithfully implement the Vuvuzela protocol, and that there is
no data leakage through side channels. Of course, some clients
and servers may be controlled by an adversary (in which case,
they need not follow the protocol), but honest clients and
servers are assumed to be running bug-free implementations.

In terms of availability, Vuvuzela assumes that clients can
misbehave, but that each server will handle requests properly.
Any server can mount a denial-of-service (DoS) attack by
blocking messages. This is unavoidable given our assump-
tions that the adversary can actively tamper with the network,
and that at least one server is honest (thus, messages cannot
bypass any server). However, even if an adversary mounts a
DoS attack on Vuvuzela, the adversary would not learn any
additional information (unless the users, as a result of the DoS
attack, switch to a less-secure chat protocol).

3 Overview

To help understand Vuvuzela’s design, this section provides a
high-level overview of the system, and the next two sections
will dive into the details of Vuvuzela’s protocols.

Vuvuzela consists of a single chain of servers to which
clients connect to communicate. We assume that the chain
of servers, along with each server’s public key, is known to
clients ahead of time; all clients use the same chain. Clients
always connect to the first server in the chain, which in turn
connects to the second server, and so on.

Vuvuzela clients participate in two protocols. The first
protocol, called the conversation protocol, allows a pair of
users to exchange messages, assuming that they both decided
to communicate with one another. The second protocol, called
dialing, allows one user to request a conversation with another.

4 Because Vuvuzela does rely on cryptography, it only provides computa-
tional differential privacy [27], although we do not include a full formalization
of such in this paper.
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Figure 3: Overview of Vuvuzela’s conversation protocol.

When a client first connects to Vuvuzela, it starts by listening
for incoming calls through the dialing protocol. When the
client receives an incoming call, the user can choose to enter
into a conversation with the caller, which enables them to
exchange messages. Conversely, one can dial another user,
and preemptively enter into a conversation with that user, in
anticipation that user will reciprocate.

3.1 Protocol mechanics

Vuvuzela’s two protocols communicate through dead drops:
virtual locations on Vuvuzela’s servers where one client de-
posits a message, and another client picks it up. Figure 3 gives
an overview of Vuvuzela’s dead-drop-based design. For ex-
ample, to hold a conversation, two Vuvuzela clients agree on
a randomly chosen conversation dead drop for each message
exchange. The two clients can now exchange messages by
placing them in (and retrieving them from) this dead drop.
Dead drops are named by 128-bit IDs, so honest clients should
never collide in the dead drops they choose.

Similarly, each user (identified by the user’s public key) is
assigned to an invitation dead drop, based on a hash of the
user’s public key. This dead drop is shared with other users.
Dialing a user thus requires placing a message into that user’s
invitation dead drop. Each user’s client periodically polls its
invitation dead drop, and checks if any of the messages there
are for it. As we describe in §5, we will prevent an adversary
from learning whether Alice is receiving invitations by adding
cover traffic to invitation dead drops.

Vuvuzela’s dead drops are ephemeral, meaning they do not
persist over time. Instead, Vuvuzela works in synchronous
rounds, each with a new set of dead drops. The first server
in Vuvuzela’s chain is responsible for coordinating the round,
by announcing the start of a round to clients and waiting a
fixed amount of time for clients to declare what dead drop
they want to access. The servers collect all of the requests in a
given round, perform the accesses requested by clients (e.g.,
put a message into a dead drop, or get the contents of a dead
drop), and return the results to each client. There is no way to
access a dead drop once the corresponding round is over. If



a client temporarily goes offline, it might be unable to send a
message in a particular round, or might miss a message meant
for it; Vuvuzela deals with these issues through retransmission
at a higher level (in the client itself). Vuvuzela’s round-based
design makes it difficult for an adversary to correlate dead drop
accesses over time; for instance, the conversation protocol
chooses a new pseudo-random dead drop for each round.

3.2 Achieving privacy

Building on the round-based dead drop design, Vuvuzela
achieves privacy through a combination of constant-bandwidth
protocols, mixnets, and cover traffic, as illustrated in Figure 3.
In particular, Vuvuzela addresses three classes of attacks as
follows; we discuss these defenses in more detail in §4 and §5,
and formally analyze the resulting privacy in §6.

Network traffic. To limit the information that an adversary
can learn by watching the network traffic between Vuvuzela
clients and Vuvuzela servers, Vuvuzela encrypts all messages.
Furthermore, Vuvuzela ensures that message sizes, and the
rate at which messages are sent, are independent of user ac-
tivity (via padding, splitting, etc). Vuvuzela clients also send
messages at a fixed rate (queueing messages if the user types
too fast, or generating empty messages if the user has not
typed anything). One implication of this design is that there’s
a fixed number of conversations that a client can participate in
per round (in our prototype, we set this to one).

Anonymizing dead drop accesses. Dealing with server com-
promises is a challenge in Vuvuzela. Dead drops are stored in
memory on the last server in the chain, and all requests to this
server are encrypted. However, we assume that any server—
including this last server—could be compromised. This can
be problematic if an adversary can determine which pair of
users accessed a given dead drop.

To address this attack, Vuvuzela uses a mixnet approach.
In particular, all requests are recursively encrypted under the
public key of each server in Vuvuzela’s chain. Each server is
responsible for decrypting incoming requests, and randomly
shuffling all of the requests in a round before forwarding them
to the next server. This design ensures that, if there is an
honest server in the chain, an adversary cannot figure out
which incoming request corresponds to an outgoing request,
and thus prevents an adversary with access to the dead drops
on the last server from learning which users accessed them.

Hiding dead drop access counts. Even with a mixnet, an ad-
versary can still learn some information from just the number
of dead drops that are accessed each round. For instance, an
adversary might correlate the fact that a conversation seems
to stop every time either Alice’s or Bob’s network discon-
nects. To obscure this information, Vuvuzela servers add noise
requests—randomly generated requests that are indistinguish-
able from real user requests—to prevent statistical correlation
attacks. As we show later, techniques from differential privacy
allow us to precisely quantify the resulting level of privacy.
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Figure 4: Strawman conversation protocol that does not hide information
about which users accessed a given dead drop.

4 Conversation Protocol

To understand the design of Vuvuzela’s conversation protocol,
consider a strawman version of the protocol shown in Figure 4,
where users access dead drops by sending messages to a single
server controlled by an adversary. In this protocol, clients
issue just one kind of request—a message exchange—which
deposits a message into a dead drop, and returns the other
message (if any) that was deposited into the same dead drop in
that round. While it forms the basis of the Vuvuzela protocol,
this strawman allows an adversary to observe three variables:

1.
2.

Which users participated in each round.

Which users accessed each dead drop, which allows the
adversary to link users to one another. (The adversary can
compromise the server storing the dead drops to see this.)

How many messages were successfully exchanged each
round, which is equivalent to how many dead drops were
accessed twice in that round. This is a subset of the in-
formation that an adversary can derive from the above
variables, but we list it separately because hiding it re-
quires a different approach.

Vuvuzela’s conversation protocol, shown in Algorithms 1
and 2, hides all but the last variable from the strawman design,
and for the last variable, obscures it with enough cover traffic
to provide a high degree of privacy. The rest of this section
describes how Vuvuzela achieves this.

4.1 Hiding variables

Hiding which users are active. To eliminate the variable of
which users are participating in each round, all users always
perform an exchange, even if they have no partner. For exam-
ple, in Figure 4, Charlie performs an exchange with a random
dead drop. To make sure that all exchange requests look the
same to an adversary, all messages are padded to the same
length and encrypted using an indistinguishable encryption
scheme, and the last Vuvuzela server returns an empty mes-
sage when it receives only one exchange for a dead drop.

Randomizing dead drop IDs. If Alice and Bob were to al-
ways use the same dead drop ID, then an adversary might
correlate the fact that Alice and Bob are online with the fact



Algorithm 1 Conversation round: client

Algorithm 2 Conversation round: server

Consider a user Alice, with public key pkyjc. and secret key skyjice-
Each server i, ranging from 1 to n, has a public key pk., ... Alice’s
client takes the following steps for each round r:

la. Compute dead drop and encrypt message (if Alice is in
an active conversation with user Bob, whose public key is
Pkvob): Using Diffie-Hellman, compute a shared secret s,.1 =
DH(skajice, Pkvob). The dead drop will be b = H(s,4+1,r). Pad
and encrypt Alice’s message m using nonce » and secret key s,
to get e,+1 = (b, Enc(s,+1,m)). If Alice has not typed in any
message this round, m is the empty message.

. Construct fake request (if Alice is not in an active conversation):
Generate a random public key pk.ng, and let m be the empty
message. Compute shared secret s,,,1, dead drop b, and resulting
ciphertext e, as above, with pk.,ng instead of pkpgp.

. Onion wrap the request and send it to the servers: Alice’s
client encrypts the request for each server in the chain. Encryption
happens in reverse, from server n to server 1, as server 1 will
be the first to decrypt the request. For each server i, generate
a temporary keypair (pk;, sk;). Then, re-encrypt e;.; with s; =
DH(sk;, pki _..) to get e; = (pk;, Enc(s;, eir1)).

server

. Receive the result from the servers and unwrap it: After send-
ing e; to server 1, Alice’s client gets back e/. If she is not in an
active conversation, the result is irrelevant (it is an encryption
of an empty message). If she is in an active conversation with
Bob, Alice’s client decrypts the layers: e/, < Dec(s;, ;). After
decrypting e/ ., and unpadding the message, Alice’s client can
display the message Bob sent her (if it’s not the empty message).

that a particular dead drop is active. To ensure that an adver-
sary cannot learn anything from the dead drops IDs accessed
each round, Vuvuzela clients use a cryptographically secure
pseudo-random number generator to generate a dead drop ID
each round based on a shared secret and the round number.
(Two users generate their shared secret based on their public
keys.) This ensures that an adversary cannot learn any in-
formation from the dead drop IDs being accessed in a given
round, and cannot correlate the dead drop IDs across rounds.

Unlinking users from requests. To eliminate the observable
connection between the sender of a message, the dead drop
that the message is placed in, and the eventual recipient of
the message, Vuvuzela employs a mixnet design. To make
sure that exchange requests get mixed, each client encrypts
their request with the public key of each server. If there are
three servers, with public keys pk;, pk», and pks, then a user
encrypts their request r to form Epkl(E,,;(Z(E,,k}(r))).5 This
onion construction ensures that the request r can be decrypted
only if each server removes its encryption layer in turn. Within
each server’s layer of encryption, the user also includes a
temporary key for that server to use to encrypt the user’s
result on the way back, as shown in Algorithm 1. Each server
waits for all of the round’s requests to come in, decrypts its
layer of encryption, and shuffles all the requests with a random

SOf course, s contents is also encrypted with the recipient’s key.
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1. Collect and decrypt requests: Server i receives many requests
of the form e; = (pk;, Enc(s;, ¢;11)), either from clients or from
the previous server in the chain. The server first computes all the
shared secrets s; = DH(sk,..,, pki), and then decrypts e;,;.

Generate cover traffic: The server samples a random 7, and n,
from Laplace(u, b) capped below at 0. Then, the server gener-
ates [n;] individual accesses to random dead drops with random
requests, and [n,/2] pairs of accesses. These fake requests are
added to the pool of requests for this round.

3a. Shuffle the requests and send them to the next server (servers
i < n): The server computes a permutation r for this round,
shuffles all the requests according to z, and sends them to the
next server. After the next server returns the results, the server

unshuffles them by applying the inverse permutation 7.

3b. Process all requests and dead drops (server i = n): The last
server matches up all the accesses to each dead drop. For each
pair of exchanges on the same dead drop, the server exchanges

the contents of the requests and returns those.

Encrypt results and return them: Each resulting message e, |

gets encrypted to e; = Enc(s;, e}, ,), and all messages get returned.

permutation. Since obtaining r requires every server to decrypt
the onion, this means that at least one server will shuffie r along
with all other requests in the same round (since we assume
one server is honest and following the protocol).

This provides a strong degree of security. More precisely,
if the honest server is the last one, then the adversary has no
visibility into which dead drops are being accessed by users. If
the honest server is one of the mixing servers (i.e., not the last
server), the adversary cannot correlate the requests going into
the honest server with the ones coming out, as the adversary is
assumed not to have that server’s private key. Consequently, a
user cannot be linked to their dead drop requests after mixing.

After processing the exchanges, the results get passed back
through the chain in reverse. Each server encrypts each result
with the temporary key that was left for it on the way in, ap-
plies the shuffling permutation in reverse, and sends it back to
the previous server in the chain, or the original user for the first
server in the chain (Algorithm 2). Again, Vuvuzela’s assump-
tion of at least one honest server prevents an adversary from
linking any result to the corresponding dead drop exchange.

4.2 Obscuring the number of messages exchanged

At first glance, it might seem as if the mixnet already provides
strong privacy guarantees. Every round, each user picks a
random dead drop, sends an indistinguishable request, and the
protocol ensures the adversary cannot tie the user to the dead
drop that was accessed. How is this protocol insecure?

The problem lies in the one remaining observable variable:
the histogram of dead drop access counts. While the dead drop
IDs and dead drop contents are all indistinguishable from our
adversary’s perspective, some dead drops still look different.
For example, in Figure 4, one dead drop is accessed twice in



a round, while another dead drop is accessed just once. As
we described in §2.1, this can provide valuable information by
exposing the number of messages exchanged.

One attack possible with a mixnet design involves the ad-
versary controlling, for example, the first and third Vuvuzela
servers. Suppose the adversary wants to know whether Alice
and Bob are communicating. To figure this out, he collects
requests from all users at the first server, but then throws away
all requests except those from Alice and Bob. Then, he passes
these requests to the second server. The second server will
mix the requests and send them to the third server. If the adver-
sary controls the third server, he can now figure out whether
Alice and Bob are talking! Specifically, if Alice and Bob are
communicating, the third server will see two exchanges for
the same dead drop; otherwise, it will not.

An adversary who might not be willing to perform such
invasive attacks could still learn a lot from dead drop access
patterns. For example, the adversary can simply wait for Alice
to go offline, and look at the difference in dead drop access
counts between rounds. If the number of dead drops with two
exchanges decreases, the adversary can infer that Alice was
probably talking to someone in the previous round.

These attacks demonstrate that even a small amount of
observable information can be valuable. Luckily, we can
completely describe the variables observable to an adversary
with two numbers: the number of dead drops that had one
exchange request, and the number of dead drops that had two
exchange requests. Beyond their number of accesses, the dead
drops are cryptographically indistinguishable.

To hide these last two variables, each server generates cover
traffic requests that look like accesses to random dead drops.
The server draws two samples, n; and n,, from the distribution
max(0, Laplace(u, b)), and adds [n; ] requests that each access
a dead drop once, and [n,/2] pairs of requests that access
the same dead drop. The server shuffles these requests along
with the real ones before passing them to the next server, and
removes them when results come back. §6 explains why we
chose this distribution, and explains how to set u and b.

Cover traffic adds random noise to the dead drop access
counts at the last server. As a result, an adversary will no
longer learn much by throwing away all requests except those
from Alice and Bob, and an adversary will also no longer learn
much when Alice goes offline, as the cover traffic hides those
valuable small changes in the access counts.

Although cover traffic hides the exact number of dead drops
accessed once or twice, an adversary can still tell roughly how
many people are talking, by looking at the number of dead
drops accessed twice and subtracting the average amount of

OTt is possible for a dead drop to get more than two exchanges if an adver-
sary issues many exchanges for a dead drop. However, uncompromised users
choose random dead drops, making the probability of a collision negligible.
Thus, we focus on dead drop access patterns of uncompromised users; the
adversary already knows the accesses by compromised users.
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noise. This meets our security goal, which is to prevent an
adversary from learning information about a single individual.

5 Dialing Protocol

Vuvuzela’s conversation protocol is useful for pairs of users
that have agreed to talk to each other. However, users need a
way to start conversations with new partners or restart conver-
sations with previous partners (users can have a fixed number
of conversations per round, so a user may end one conversa-
tion to make room for another). This is handled by Vuvuzela’s
dialing protocol. We expect that users use dialing each time
they want to start a new conversation with a partner, even if
they have talked to this partner before (but have since stopped
exchanging messages through the conversation protocol).

In principle, combining the conversation and dialing pro-
tocols could improve privacy, by making conversation and
dialing requests indistinguishable from one another. However,
as we show in the rest of this section, dialing has significantly
different message size requirements, which led to our decision
to expose two distinct protocols in Vuvuzela.

5.1 Overview

In Vuvuzela’s dialing protocol, a user can send an invitation
to talk to another user identified by a long-term public key.
The invitation itself consists of the sender’s public key. Then,
the two users can derive a shared secret from their keys using
Diffie-Hellman and use the conversation protocol to chat. The
challenge Vuvuzela’s dialing protocol addresses is, once again,
to reveal as few variables to an adversary as possible, and to
add the right amount of noise to those variables.

Unlike the conversation protocol, dialing cannot use random
dead drop IDs, because users do not know which other users
may wish to dial them. Instead, the dialing protocol uses a
number of large invitation dead drops, as shown in Figure 5.
Each such dead drop receives all invitations for a fixed set
of public keys; with m invitation dead drops, public key pk’s
invitations are stored in dead drop H(pk) mod m, where H is
a standard cryptographic hash function. Each user downloads
all invitations from their dead drop (including noise invitations
added as cover traffic) and tries to decrypt every invitation to
find any that are meant for them. If a user wishes to accept
a sender’s invitation, the user simply starts the conversation
protocol based on that sender’s public key.’

Similar to the conversation protocol, Vuvuzela hides three
sets of variables from an adversary:

1. Which users participated in the protocol each round?
2. What dead drop did some sender add an invitation to?

3. Given a dead drop, how many invitations are in it (since
the adversary can link recipients to dead drop IDs)?

7 To tie the sender’s public key to an identity, the Vuvuzela client software
can use either manually entered out-of-band verified public keys, or a local
copy of a public database of keys such as a PGP key server.
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Figure 5: Overview of Vuvuzela’s dialing protocol.

As in the conversation protocol, Vuvuzela hides the first
set of variables using fake invitations, the second set using a
mixnet, and the third set by adding cover traffic.

However, there are three important differences from the con-
versation protocol. First, Vuvuzela does not hide which dead
drop a client downloads; this is because Vuvuzela assumes
the user’s public key is well known, and thus the adversary
knows the client’s invitation dead drop. Second, the responses
are variable length (since there can be a varying number of
invitations in a dead drop). Third, the observable variable
is now the number of invitations in a dead drop, rather than
simply the histogram of dead drop access counts.

Even though the dialing protocol has more observable state
that needs noising, we show that the noise required is man-
ageable because invitations are smaller and less frequent than
conversation messages. By carefully choosing the number of
dead drops, Vuvuzela can also make the total noise propor-
tional to the number of actual invitations; each client needs to
download just one dead drop worth of noise.

5.2 Unlinking senders from invitations

Like conversations, dialing in Vuvuzela take place in rounds.
Our prototype starts a new dialing round every 10 minutes,
which translates into the latency of starting a new conversation.

For each round, the Vuvuzela servers fix a number m of
invitation dead drops to create (§5.4 describes how to best set
m). Then, each client chooses an invitation dead drop (e.g.,
the dead drop of a friend that the user wants to communicate
with), and sends an invitation to it. If a user does not want
to start a conversation in a given round, the client writes into
a special no-op dead drop that is not used by any recipient.
Each invitation consists of the sender’s public key, a nonce,
and a MAC, all encrypted with the recipient’s public key. An
invitation for a recipient with public key pk is placed in dead
drop H(pk) mod m. Invitations are also onion-encrypted and
shuffled, so that they are unlinked from their sender.

5.3 Hiding the number of invitations per dead drop

To achieve differential privacy, Vuvuzela must mask the num-
ber of invitations in each invitation dead drop; otherwise, an ad-
versary could infer whether people are talking to Alice, based
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on the number of invitations in dead drop H(pk,jice) mod m.
One crucial difference from the conversation protocol is that
an adversary can observe the size of the invitation dead drop
based on the sizes of responses (or simply by asking to down-
load it, since invitation dead drops are shared by many users).
Thus, every server (including the last one) must add a random
number of noise invitations to every invitation dead drop.

Like in conversations, each server adds noise drawn from a
truncated Laplace distribution [max(0, Laplace(u, b))] to each
invitation dead drop. The parameters u and b can be different
from the conversation protocol, as we discuss in §6.

5.4 Tuning the number of dead drops

In the dialing protocol, the amount of noise that needs to be
added to each invitation dead drop turns out to be constant,
based only on the desired security parameters and not on the
number of users. However, the number of invitation dead
drops, m, presents a trade-off between the amount of cover
traffic that will be generated by the servers and the amount of
data that will be downloaded by clients.

To strike a balance between these factors, we propose setting
m so that each dead drop has roughly equal amounts of real
invitations and noise. In particular, suppose that the average
noise per dead drop required by our security parameters is
U, and that there are n users, of which a fraction f send real
invitations each round. Then Vuvuzela can set m = nf/u. This
ensures that each dead drop has roughly u real invitations and
A noise invitations, and that the overall processing load on the
servers is only 2 the load of the real invitations.

The value of m is purely an optimization: regardless of m,
each user is protected by the level of noise, u, added to their
invitation dead drop. Thus, the last server (which hosts the
invitation dead drops) can compute the optimal value of m as
above, and propose this value of m for upcoming rounds to
other servers (which have to generate noise for each of the m
invitation dead drops). The first server then informs clients of
the value of m for a given dialing round.

5.5 Downloading invitations

In Vuvuzela’s dialing protocol, each dead drop contains a large
amount of data (on the order of megabytes, as we show in §8),
and each dead drop is downloaded by a large number of clients
whose public keys map to that dead drop ID. This traffic can
overwhelm Vuvuzela’s servers, but at the same time, requests
for downloading invitations do not need to be routed through
Vuvuzela’s servers, since they do not need to be mixed or
noised. Thus, we envision that Vuvuzela could use a CDN or
BitTorrent-like design to distribute the contents of invitation
dead drops to clients. However, we have not implemented this
in our prototype so far, so we avoid further speculating about
the detailed design of this extension.

6 Analysis

In this section, we analyze how much privacy a given level of
noise provides in Vuvuzela. We start by analyzing one round



of the conversation protocol, then expand to multiple rounds
and to dialing. We also compute the noise required for realistic
security parameters.

6.1 Observable variables

Recall from §2.2 that our goal is to provide (&, 6)-differential
privacy, where every event observed by our adversary is nearly
equally likely if we change the actions of one user.

To understand what observations an adversary can make
from one round, consider the client and server pseudocode
shown in Algorithms 1 and 2. The client sends a fixed-size
request regardless of who the user is communicating with,
and the request is encrypted in an onion, using fresh Diffie-
Hellman keys exchanged with each of the servers’ public
keys. The client also receives a fixed-size response from the
servers, similarly encrypted in an onion with the same keys.
Assuming that our encryption scheme is cryptographically
secure, an adversary cannot learn anything from these requests
and responses (except for the set of client machines that are
connected to Vuvuzela), unless the adversary has also compro-
mised some of the servers.

Suppose an adversary compromises all servers except the
last server (which is responsible for storing the dead drops). In
this case, the adversary learns no information. This is because
the adversary cannot decrypt the last layer of the onion in
the requests or responses (since the adversary does not have
the key of the last server), and consequently, all requests and
responses are indistinguishable, owing to their fixed size.

Suppose instead that an adversary compromises the last
server. Then by our assumption, there must exist at least one
honest server, which is not the last server. For the purposes of
our security proof, we rely on this honest server to perform
two functions: generating cover traffic (server step 2) and shuf-
fling the requests and responses (server step 3a). Since the
honest server shuffies the responses, and since our encryption
scheme is secure, once the responses pass through the hon-
est server, they become indistinguishable to any adversaries
that have compromised the subsequent (earlier in the chain)
servers. However, requests may provide the adversary with
some information, as we now discuss.

The issue is that the adversary may have compromised all
of the subsequent servers in Vuvuzela’s chain, and thus may
be able to trace each request. The adversary does not know
who sent each request (due to shuffling), but we must consider
what information can be learned from the request itself. The
request’s message payload is encrypted, and thus reveals no
information. The dead drop ID is chosen at random, and is not
reused across rounds, so the only possible information that the
adversary learns is when the dead drop IDs from two different
requests are equal. Since the dead drop ID space is large (128
bits), legitimate users will almost never choose the same dead
drop IDs by accident; two users choose the same dead drop
ID only if they are in an active conversation. Without loss
of generality, we can ignore any requests generated by the

Alice’s real action

Idle Conversation  Conversation
with b with x
. Idle 0,0 -2,+1 0,0
28 | Conversation withh  +2,—1 0,0 +2,-1
= g Conversation withc  +2,-1 0,0 +2,—1
< § Conversation with x 0,0 -2,+1 0,0
Conversation with y 0,0 -2,+1 0,0

Figure 6: Difference in the number of dead drops with one access (Am;) and
two accesses (Amy) between a user’s (call her Alice) real action and her cover
story, shown as Amj, Amy in each table entry. b and ¢ denote distinct other
users in a conversation with Alice. x and y denote distinct other users not in a
conversation with Alice.

adversary (which might use arbitrary dead drop IDs), since
their contents gives the adversary no additional information.
Thus, the only variables the adversary can see are the set
of users connected to the system, the number of dead drops
that are accessed twice, and the number of dead drops that are
accessed once. We now show that, based on these observable
variables, the protocol can be made (&, 6)-differentially private.

6.2 One round of conversations

Let m; and m, be the number of dead drops that are accessed
once and twice in a given round, respectively. Figure 6 shows
how the difference between the real actions of a user (call her
Alice) and her cover story for that round would affect m; and
my. The columns represent what Alice really did that round:
she either (1) was idle, (2) performed a dead drop exchange
with some user b who was likewise doing an exchange with
Alice, or (3) performed an exchange with some user x who did
not reciprocate the exchange. The rows describe her possible
cover story: she (1) was idle, (2) exchanged messages with
either the same user b or a different user ¢ who reciprocated
the exchange, or (3) did an exchange with the same user x or
a different user y who did not reciprocate. In all cases, m; is
affected by at most 2 and m, by at most 1.

We now show that the noise added to m; and m, in §4.2,
which was generated with Laplace distributions capped below
at 0, provides differential privacy.

Theorem 1. Consider the algorithm M that adds noise
[max(0, Laplace(u, b))] to m; and [max(0, Laplace(%‘, g))] to
my. Then M is (e, d)-differentially private with respect to

changes of up to 2 in m; and 1 in my, for ¢ = % and
2—

6 = exp (TH)

Proof. Given in Appendix A. m]

This theorem gives € and ¢ in terms of the parameters y and
b of our noise, but we can also use it to compute the ¢ and b
needed for a target level of privacy:

4In¢
&

b=4je p=2- (1)



6.3 Multiple rounds of conversations

Adversaries will try to learn information about users across
multiple rounds of communication, possibly perturbing the
system each round (e.g., knocking Alice offline) based on ob-
servations in earlier ones. This scenario is known as adaptive
composition in the differential privacy literature. Fortunately,
differential privacy provides a bound on & and ¢ after k rounds
of composition, with the property that the average amount of
noise (i.e., i) needed for a given & and ¢ grows only with Vk:

Theorem 2. Consider the algorithm M that adds noise
[max(0, Laplace(u, b))] to m; and [max(O0, Laplace(%, g))] to
my over k Vuvuzela rounds. Then M is (¢, ¢")-differentially
private with respect to the actions of one user in these rounds,
with parameters

& = \2kIn(l/d)e + ke(e® — 1) and & =ké +d,
for any d > 0, where € and ¢ are as in Theorem 1.8

Proof. Direct application of Theorem 3.20 in [18]. O

Equation 1 shows that y is proportional to 1/ and only log-
arithmically dependent on b. Theorem 2 shows that, to support
a given &’ and ¢’, the (per-round) ¢ must shrink proportionally
to k and the (per-round) £ must shrink proportionally to Vk.
This means the per-round u grows proportionally to V.

Although this theorem considers k rounds, it can also be
applied in cases when the user was running the Vuvuzela
client for more than k rounds. In that case, Theorem 2 still
provides (&', ¢")-differential privacy for any cover story that
differs from the user’s real actions in at most k rounds. This
allows a user that is idle a significant fraction of the time to
extend Vuvuzela’s privacy guarantees to many more rounds,
by having the cover story match the real actions during idle
rounds.

6.4 Noise needed in practice

To set the level of noise (determined by u and b) in practice,
we need to know the values of € and ¢ that will be acceptable
to users of an (g, ¢)-differentially private algorithm.

In differential privacy, € gives a multiplicative change in the
probability of each event based on the user’s actions, while ¢
gives an additive change. Usually, € is recommended to be set
between 0.1 and In3 [17], and ¢ should be small, e.g., 1074,
The multiplicative & provides plausible deniability: any event
observed if, say, two specific users are talking has within
e® times the probability if they were doing something else
(e.g., within 1.1x for £ = 0.1 and within 2X for € = In 2), so
users always have a plausible “cover story.” In contrast, § cov-
ers events that might have zero probability under some actions
but happen under others. For example, if the number of dead
drops accessed twice is 0 in some rounds after adding noise,
the adversary will know for sure that no users communicated.

8 d is a free parameter that lets one trade off between &’ and §.
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Figure 7: Values of &’ and ¢’ after k rounds conversations under the three
noise functions considered in the text, with means p =150K, 300K, and 450K.
We plot ¢° instead of & to let the reader easily see the level of deniability.

This ¢ arises in Vuvuzela because we cannot “subtract” noise.
However, a low § ensures such events are extremely unlikely.’

As a concrete example, consider an adversary Eve that be-
lieves that two users, Alice and Bob, might be talking using
Vuvuzela. In general, Eve will already have a certain prior
belief that Alice and Bob are talking, say pprior = 50%. We
can apply Bayes’ rule to compute Eve’s posterior belief that
the two users are talking based on any observation in Vuvuzela.
With € = In2, Eve’s posterior belief increases to 67%. With
€ =1n3, it goes up to 75%. In any case, we see that observing
Vuvuzela can aid Eve, but does not provide damning evidence
even with high . If ppor were smaller, Eve’s posterior proba-
bility would increase by a larger factor, but not more than e°.
For example, if pprior = 1% and & = In 3, it would increase to
3%, but this probability is still small.

Given this background, we plot & and ¢’ as functions of the
number of rounds k for three different distributions of noise in
Figure 7, each chosen to provide acceptable &’ = In2 and ¢’
10~ for varying k between tens and hundreds of thousands of
rounds. The distributions chosen were (u = 150K, b = 7300),
(1 = 300K, b = 13800), and (1 = 450K, b = 20000). u is the
mean of the Laplace distribution (i.e., the average noise per
server), and \/Eb is its standard deviation.

We chose these distributions using Theorems 1 and 2 as
follows. First, we set d in Theorem 2 to 1073 in order to get
¢’ values close to this (neither & nor ¢’ is very sensitive to
d). Then, for each mean u, we set b, the scale parameter, to
achieve & = In2 and &' = 107* for as large a value of k as
possible, using a parameter sweep.'? We see that in all cases,
it is possible to support a fairly large number of rounds at
& =1n2 and & = 10™*: this number of rounds is 70,000 for
1 = 150K, 250,000 for 4 = 300K, and 500,000 for u = 450K.
In addition, both & and 6" change smoothly with different k.

9 In a large population of suspected users, some individuals might have
metadata revealed under this definition. However, the extra risk per user
is likely negligible compared to other security risks that whistleblowers or
reporters already face, and it is fairly inexpensive to reduce ¢ (the average
amount of noise needed grows only logarithmically with 1/6).

10 In general, & grows with b and &’ falls with it.
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Figure 8: Values of ¢’ and ¢’ after k rounds dialing under the three noise
functions considered in the text, with means ¢=8K, 13K, and 20K.

Finally, from Theorems 1 and 2, we can also derive how the
mean noise y required to meet a given & and &’ scales with
each parameter. We see that:

e u increases proportionally to Vk.
e u increases linearly with 1/¢&’.
ey increases proportionally to log(1/6").

e 4 is independent of the total number of users.

6.5 Dialing protocol

In Vuvuzela’s dialing protocol, we need to add noise to every
dialing dead drop because adversaries can distinguish between
them. Nonetheless, the total amount of noise per second can
be smaller than in conversations, for three reasons:

1. Dialing rounds can be longer than conversation rounds,

say 10 minutes.

. Dialing is less common than conversation messages, de-
creasing the values of kK we might worry about.

3. Invitations (just a public key) are shorter than messages.

The analysis for dialing is similar to Theorems 1 and 2, ex-
cept that modifying each user’s action in a round only changes
up to two dead drop counts by 1 each, which gives € = z% and

0= % exp (1%”) As a result, the number of noise messages is
about half as large as in conversations for a given &’ and ¢’. In
addition, for dialing, k represents the number of invitations the
user participated in, which can likely be smaller (e.g., a user
who takes 5 calls per day only needs k = 1800 for one year).!!
Figure 8 plots &’ and ¢’ in dialing for different levels of
noise using the same methodology as Figure 7. We chose
the parameters (u=8000, »=500), (u=13000, b=7700) and
(4=20000, b=1130), which let us cover 1200, 3500 and 8000
dialing rounds respectively with & = In2 and & = 107,

7 Implementation

To evaluate Vuvuzela’s design, we implemented a prototype
of Vuvuzela in Go. Our prototype consists of approximately

'1f an adversary purposefully sends many invitations to the same user,
they will not count against this bound—since the invitations are sent by the
adversary, they do not convey any new information about the user.
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2,700 lines of code. The source code will be available at
https://github.com/davidlazar/vuvuzela.

The most computationally expensive part of Vuvuzela’s
implementation is the repeated use of Diffie-Hellman in the
wrapping and unwrapping of encryption layers. Vuvuzela
must use new keys for each individual message, as otherwise
the same key appearing twice would be a variable visible to
an adversary. For performance, we use an optimized assembly
implementation of Curve25519 from Go’s crypto library.

There are a few differences between our prototype imple-
mentation and the design described in this paper. First, we
implement an additional entry server, whose job is to handle
a large number of connections from clients, multiplex client
requests into a single round that’s sent to the chain of Vu-
vuzela servers, and to demultiplex the results to individual
clients. The entry server is not trusted. Second, we have not
yet implemented either the client-side retransmission logic, or
the adaptive choice of the number of invitation dead drops (at
the scale we are operating Vuvuzela in our experiments, the
optimal number of introduction dead drops is one). Finally, we
have not implemented CDN- or BitTorrent-based distribution
for the dialing protocol.

8 Evaluation
Our evaluation quantitatively answers the following questions:

e Can Vuvuzela servers support a large number of users and
messages? (§8.2)

e Does Vuvuzela provide acceptable performance? (§8.3)

8.1 Experimental setup

To answer the above questions, we run a series of experiments
on Amazon EC2 virtual machines (VMs). All servers used are
c4.8xlarge machines with 36 Intel Xeon E5-2666 v3 CPU
cores, 60 GB of RAM, and 10 Gbps of network bandwidth.
The machines run Linux kernel version 3.14 and Go 1.5.

We use the following parameters across our experiments.
Our chain consists of 3 Vuvuzela servers, each corresponding
to one VM. An additional VM runs the entry server. Conversa-
tion messages are 256 bytes long (including 16 byte encryption
overhead). Invitations are 80 bytes long (including 48 bytes
of overhead). To ensure that clients are not the bottleneck, we
use an additional five VMSs to simulate user clients, and we
multiplex several Vuvuzela clients onto a single TCP connec-
tion to the entry server, to avoid running out of source TCP
port numbers. Every simulated user sends a message each
conversation round to another user (although Vuvuzela’s per-
formance is the same regardless of whether users are actively
communicating or are idle). Each dialing round, 5% of the
users dial another user. Since we have not implemented a
CDN/BitTorrent for downloading the dialing dead drops, only
100 clients fetch their dialing dead drop. This lets us estimate
the dialing latency, and we extrapolate the bandwidth needed
for distributing the dialing dead drops to all clients. We pick
4 = 300,000 for the conversation protocol and u = 13,000 for
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the dialing protocol. Finally, to not let noise affect the clar-
ity of the graphs, we configure servers to always add exactly
u noise, rather than sampling the Laplace distribution; this
produces the same average results with less variance.

All our experiments run on servers in the same data center.
In an actual deployment, servers should run in different data
centers so that no single operator controls all servers. Running
in multiple data centers would increase the latency between
servers, but network latency has little effect on Vuvuzela’s
performance, as each round is largely dominated by the CPU
cost of cryptography on the servers and by the bandwidth for
transferring all of the encrypted requests in a round.

8.2 Server performance

To evaluate whether Vuvuzela can support many users and
messages, we measure the end-to-end latency and throughput
of Vuvuzela’s conversation and dialing protocols when faced
with anywhere from ten users to two million users. With one
million users, our prototype achieves a throughput of approx-
imately 68,000 conversation messages per second. We then
evaluate the underlying costs behind Vuvuzela’s performance.

Conversation protocol. Figure 9 shows the total latency of
a conversation round, with the number of online users ranging
from ten users to two million users. The latency is end-to-end:
it includes shuffling, generation of cover traffic, encryption
and decryption, RPC overhead, and so forth, and is thus repre-
sentative of overall performance.

Our results show that Vuvuzela scales linearly with the
number of users and messages. As mentioned in §6, the
cover traffic required for Vuvuzela’s conversation protocol
is constant: the amount for ten users is the same as for two
million users. The baseline time to process cover traffic can
be seen with ten users (20 seconds end-to-end latency). Even
though there are only ten real users and messages, Vuvuzela
servers must process an entire round worth of requests at once,
so the latency is dominated by the noise requests introduced
by Vuvuzela servers. Each server in the chain, except for the
last one, adds u X 2 noise requests on average, for a total of
1.2 million requests when there are no users. With 2 million
users, each adding one request, we get 3.2 million messages
on the right side of the graph, for an end-to-end latency of
55 seconds (and a throughput of 84,000 messages/second).
This demonstrates that Vuvuzela’s costs scale linearly with the
number of requests processed.

Dialing protocol. Figure 10 shows the end-to-end latency
for Vuvuzela’s dialing protocol. Here, we have 5% of users
dialing another user each round, and the other 95% of users
are not actively dialing (and thus their client sends a dialing
request to the special idle dead drop). Like the conversation
protocol, the dialing protocol scales linearly, from 13 seconds
with ten users to 50 seconds with two million users.

Dominant costs. Most of the CPU time on Vuvuzela servers
is spent wrapping and unwrapping of encryption layers. Each
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Figure 9: Performance of Vuvuzela’s conversation protocol when varying the
number of users online. Every user sends a message every round.

60 s T T T
_ u=13,000 —eo—
L, 50s b
> C
22 40s
28
2% s0s
C
()]
¢c 20s
w®
E"’ 10s | .
Os 1 1 1
10 500,000 1M 1.5M 2M

Number of online users

Figure 10: Performance of Vuvuzela’s dialing protocol when varying the
number of users online. 5% of the users dial someone every round. The
conversation protocol is running concurrently with ©=300,000.

36-core machine can perform about 340,000 Curve25519
Diffie-Hellman operations per second. In the conversation
protocol, with two million users, each server must perform one
Diffie-Hellman operation for each of the 3.2 million messages.
To avoid leaking information about a server’s permutation of
messages, one server cannot start processing a round until the
previous server finishes, so the best-case end-to-end conversa-
tion round latency would be (3.2 - 10°%3)/(3.4-10%) ~ 28 sec-
onds. This shows that Vuvuzela’s full protocol (serialization,
shuffling, cover traffic generation, etc), is within 2x of the
cost of the inevitable cryptographic operations. Vuvuzela’s
dialing protocol is similarly close to the lower-bound cost of
the underlying cryptographic operations.

Vuvuzela servers also require a significant amount of band-
width. With 1M users, servers use an average of 166 MB/sec
(excluding invitation dead drop downloads). This is domi-
nated by the total size of conversation messages (message
exchange requests and responses) from real users and from
server-generated cover traffic, with RPC and encoding over-
head. Vuvuzela’s server bandwidth requirements are compara-
ble to any other messaging system with the same number of
users and messages (albeit where one server must be capable
of processing all messages).

Adding more logical servers to the chain. Deployments of
Vuvuzela can vary the number of Vuvuzela servers. Increasing
the number of servers provides stronger security. On the other
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Figure 11: Performance of Vuvuzela’s conversation protocol when varying
the number of servers with 1 million active users and p=300,000.

hand, adding more servers increases end-to-end latency (since
each message must travel through more servers) and increases
the number of messages each server has to process each round
(due to cover traffic from each previous server). Figure 11
shows total end-to-end latency for different numbers of servers.
Performance scales roughly quadratically with the number of
servers in the chain. This is to be expected, since each of the
s servers must decrypt cover traffic from all previous servers
in the chain, with O(s) work for all O(s) servers, leading to
O(s?) scaling.

8.3 Client requirements

To evaluate whether Vuvuzela is practical for end users, we
measure the latency and throughput achievable by a single
user, and also measure the bandwidth requirements that the
Vuvuzela client places on the user’s network connection.

Latency and throughput. In our analysis we assumed 10-
minute dialing rounds, which means a client must wait on
the order of 10 minutes to start a conversation. This makes
Vuvuzela well-suited for slower-paced, e-mail-like, communi-
cation patterns where users queue up messages to send. We
could increase the frequency of dialing rounds (the servers
complete a dialing round in less than a minute), at the cost
of increasing required client bandwidth. Conversations them-
selves move fairly quickly, with sub-minute end-to-end laten-
cies for 240-byte text messages, even with 2 million active
users. Clients can pipeline conversation messages, sending
a new message every round even before receiving responses
from previous rounds; in our experiment with 1M users, this
amounts to a throughput of 4 messages per minute per client.

Bandwidth usage. For the conversation protocol, each client
sends and downloads a 256-byte message per round (tens of
seconds). Thus, the bandwidth requirements for sending and
receiving conversation messages are negligible.

The dialing protocol is more expensive, as each client must
download an entire dead drop worth of invitations. With
u = 13,000 and 3 servers, that comes out to about 39,000
noise invitations, in addition to any real invitations (for in-
stance, 50,000 real invitations if there are 1M users and 5% of
them are dialing any given round). This adds up to a total of
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about 7 MB per round. With 10-minute rounds, a client uses
an average of 12 KB/sec for downloading invitations. While
not insignificant, Vuvuzela’s design crucially avoids down-
loading the noise invitations generated by the rest of the users
that are not dialing in a given round, since they are directed
to a separate “idle” invitation dead drop (in our example, this
would be 950,000 more noise invitations).

The cost for both protocols is independent of the number of
users, so that even with many millions of users, a single DSL
or 3G phone could keep up with the required tens of kilobytes
per second of bandwidth (although bandwidth charges may be
prohibitive, depending on the user’s service agreement).

9 Discussion and Limitations

Even though Vuvuzela provides strong guarantees regarding
the inferences an adversary can make about each user, the
systems still has limitations that require care.

Bandwidth use. Vuvuzela’s fixed chain of servers enables a
simple analysis of Vuvuzela’s privacy guarantees, but trans-
lates into significant bandwidth requirements for each server
(since every server must process every message). In future
work, we hope to explore a more Tor-like distributed design
where the bandwidth costs are spread out over a larger net-
work of servers, without requiring that each message traverse
every server. We expect the main challenges will be in coming
up with a suitable security definition for this setting, and in
constructing a provable analysis of privacy.

Deployment costs. A significant roadblock to a practical de-
ployment of Vuvuzela is the bandwidth cost incurred by every
server, as mentioned above. Using Amazon’s EC2 prices
as of September 2015, a Vuvuzela server would cost about
$10,000/month, dominated by bandwidth costs, although
bulk bandwidth prices may be about an order of magnitude
lower [19]. Relying on volunteers to run Vuvuzela servers
seems infeasible. On the other hand, if the cost of running
Vuvuzela servers is amortized over 1M users, it comes out to
less than $1 per year per user. Whether such a business model
would work in practice is outside of the scope of this paper.

Treating users as noise. Vuvuzela’s use of differential pri-
vacy is conservative: to ensure privacy for two users, Alice
and Bob, that might or might not be communicating, Vuvuzela
assumes that the adversary might control (or know everything
about) every other user in the system. This forces Vuvuzela
to add a significant amount of noise in order to mask the in-
formation about whether Alice and Bob are communicating.
In a system with many users, it may be reasonable to assume
that some fraction of users are honest (i.e., the adversary does
not know what they are doing), formalized with the help of
coupled-worlds privacy [3] or noiseless database privacy [5].
This could allow Vuvuzela to achieve its security goals while
adding less cover traffic.



PKI for dialing. Vuvuzela’s dialing protocol requires a pub-
lic key infrastructure in two situations. First, to start a con-
versation, a user must know the public key of the other party.
Looking up this key on-demand over the Internet via some
key server would disclose who the user is dialing, so Vuvuzela
clients should store public keys for contacts ahead of time.
Second, when receiving a call via the dialing protocol, the
recipient needs to identify who is calling, based on the caller’s
public key. Here, the caller can supply a certificate along with
the invitation, if the recipient does not already know the caller;
this avoids the need for the recipient to contact a key server.

Forward secrecy. Vuvuzela does not achieve forward secrecy
for metadata in the dialing protocol. This is because invita-
tions are encrypted under the long-term public key of the
recipient, so an adversary who compromises a user’s private
key (and saves old invitations, which are publicly accessible)
can decrypt all past invitations with the user’s private key to
determine who called this user in the past. On the other hand,
Vuvuzela’s communication protocol provides forward secrecy
by choosing new server keys each round, and existing tech-
niques can achieve forward secrecy for message contents [31].
It may be possible to achieve forward secrecy for dialing
by rotating user public and private keys. One approach would
be to rely on a more sophisticated PKI system that supports
rotation of user keys, although contacting an external PKI
requires care to avoid disclosing information about what users
are communicating. Another approach would be to use a
forward-secure public-key encryption scheme [7].

Message size. Vuvuzela’s fixed message sizes are a good fit
for text communication, but they are not well-suited for trans-
ferring large files. Providing privacy for large file transfers is
an interesting area for future work.

Group privacy. Differential privacy makes guarantees about
individual users, but not about groups [18]. For example, if an
adversary suspects that a group of 1,000 people communicate
frequently with each other, he can block all other users from
the system. If the adversary now observes a significant number
of dead drops being accessed twice, it would confirm his sus-
picion. However, he cannot distinguish whether any specific
individual in the isolated group is actually communicating.

Denial of service attacks. As mentioned in §2.3, Vuvuzela’s
availability should be resilient to misbehaving users—e.g.,
users that send many requests or open many connections.
Since all clients must communicate with Vuvuzela’s entry
server, the entry server can mitigate client DoS attacks through
existing approaches: requiring users to sign up for an account,
requiring proof of an account on other systems (e.g., Face-
book), proof-of-work, or even payment. Requiring the user
to identify themselves to the first server does not weaken Vu-
vuzela’s privacy guarantees since we assume the adversary
already knows which users are using Vuvuzela.
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Multiple conversations. To enable multiple concurrent con-
versations, Vuvuzela clients can perform multiple conversation
protocol exchanges in each round. To ensure that the number
of exchanges does not disclose how many active conversa-
tions a user has, the client should pick a maximum number
of conversations a priori (say, 5), and always send that many
conversation protocol exchange messages per round.

10 Related Work

Secure messaging. Recent work has shown that secure mes-
saging systems can provide end-to-end encryption at scale,
starting from systems such as OTR [6, 22], Axolotl [31], and
TextSecure [30], and now being deployed by WhatsApp [29].
However, these systems encrypt only the content of the mes-
sage; metadata about what users are communicating is still
observable to an adversary. For example, even Pond [25]
explicitly states that it “seeks to prevent leaking traffic infor-
mation against everyone except a global passive attacker”. In
contrast, Vuvuzela is able to protect metadata even in the face
of such strong adversaries.

Anonymous communication systems. Anonymous commu-
nication has been studied since Chaum’s work on mixnets [9]
and DC-nets [8]. Unlike Vuvuzela, however, previous systems
do not simultaneously provide both scalability and protection
against traffic analysis.

Mixnet-style systems [9, 15, 20], Crowds [32], Freenet [11],
and onion routing [16, 35] can scale to millions of users, but
are amenable to traffic analysis by a strong adversary. For
example, an adversary may learn communication partners by
passively observing traffic at each node [13, 28] or by actively
delaying some users’ packets to see the effect on others [1].
In principle, cover traffic can help defeat traffic analysis, but
it is difficult to determine how much cover traffic is enough
(and the design of these systems it not amenable to reasoning
about the privacy guarantees provided by cover traffic); this is
precisely the problem addressed by Vuvuzela.

On the other hand, systems with provably strong security
guarantees have relied on mechanisms that scale quadratically
in the number of users. Herbivore [21] and Dissent [36] form
broadcast groups of up to 5,000 users each, which limits each
user’s anonymity and requires significant overhead to be used
for point-to-point communication (as each message is broad-
cast to all users in its group). Riposte [12] can scale anonymity
sets to a few million users over many hours, but still relies
on broadcasts and limits writes to a few hundred per second.
Systems based on private information retrieval [10], such as
the Pynchon Gate [34], decrease the amount of data each user
reads but still require O(n?) computation for n users.

Cover traffic. Several mixnet and onion routing systems have
sought to make traffic analysis more difficult using cover traf-
fic, i.e., fake traffic on each communication link [4, 20], or
delaying messages [24]. However, it has been shown that all
these schemes still reveal information after multiple rounds of



observation [26]. To add sufficient noise to cover users for hun-
dreds of thousands of rounds of communication, one would
need tens of thousands of noise messages per link. The key in-
sight in Vuvuzela is to reduce the number of variables that an
adversary can observe, which subsequently allows Vuvuzela
to add adequate noise (enough to provably protect hundreds
of thousands of message exchanges) with an acceptable cost.

Differential privacy. Several authors have used a differential-
privacy-like approach to analyze existing anonymous com-
munication schemes. However, to our knowledge, none have
designed new schemes that minimize the amount of noise re-
quired, and none provide strong privacy over many rounds
with similar performance. One key insight in Vuvuzela is that
techniques used to ensure differential privacy, namely, adding
Laplace noise, can be applied in practice to messaging systems
(as long as the systems minimize the number of observable
variable, so that reasonable amounts of noise can protect users
over many rounds).

AnoA [2] offers a theoretical framework for formalizing the
privacy of protocols, but limits the analysis to one round, and
does not say how one might achieve privacy in practice. In
contrast, Vuvuzela’s formalization captures many rounds, and
Vuvuzela presents a new design that achieves strong privacy
guarantees in a practical system.

Danezis [14] uses a differential privacy over multiple rounds
in a mixnet. However, he does not study how to reduce the
amount of information leakage each round to make strong lev-
els of privacy possible over hundreds of thousands of rounds.

11 Conclusion

Vuvuzela is the first system to scale private messaging to mil-
lions of users and tens of thousands of messages per second,
while protecting against traffic analysis by a powerful adver-
sary who can compromise all but one of the system’s servers.
Vuvuzela achieves this through a novel approach consisting
of two steps. First, Vuvuzela’s protocol is designed to clearly
identify and minimize the number of observable variables in
the system. Second, Vuvuzela’s protocol hides these variables
using noise with quantifiable security properties, leveraging
tools from differential privacy. Together, these techniques
let Vuvuzela achieve private messaging at a scale orders of
magnitude higher than prior systems.
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A Proof of Theorem 1

In this appendix, we prove Theorem 1 from Section 6.2, which
states that adding noise Ny ~ [max(0, Laplace(u, b))] to the
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dead drop count m; and N, ~ [max(0, Laplace(%‘, g))'l to my
provides differential privacy. We begin by looking at the effect
of this form of noise on a single variable x, then examine m;
and m, together.

Lemma 3. Consider the algorithm M(x) that adds noise N ~
[max(0, Laplace(u, b))] to a value x > 0. Then M is (g, 9)-
differentially private with respect to changes of up to ¢ in x,
for parameters € = é and 6 = % exp (%‘)
Proof. We will show the result for noise N~
max(0, Laplace(u, b)) without the ceiling, since post-
processing the result of a differentially private function (in
this case rounding it up) keeps it differentially private [18].
Consider x,y > 0 such that |x — y| < ¢, and let z = max(x, y).
Forany set T C (z,00), Pr[x + N’ € T] < e°Pr[y+ N' € T] by
properties of the Laplace distribution (Theorem 3.6 in [18]). In
particular, to reach values in 7, N’ has to add positive noise to
both x and y, and the shape of the Laplace distribution ensures
that these probabilities are within a factor of e® for € =
On the other hand,

b

Prx + N <z] <Pr[x+ N' < x+1] = Pr[N’ <1]
= Pr[Laplace(u, b) < 2]

1 t—,u)_é,

= exp( p
Thus for any arbitrary set of values S, we have

2

Prix+ N € S]1=Pr[x+ N €8 N(-00,7]]
+Pr[x+ N €8 N(z,0)]
<5+Pr[x+ N €8 nN(z,00)]
<S5+ Prly+ N €S N(z, )]
<6+ePr[y+ N €8]

]

In the conditions of Theorem 1, an adversary can observe
both m; and m;, and we add noise separately to each of them,

with Laplace distribution parameters (u, b) for m; and (%‘, g)
for my. |m;| changes by at most 2 when we modify the action of
one user in one round, and |m;| changes by at most 1. Thus, the

overall mechanism provides privacy parameters € = # + § =

mio= e ()« ton() mew ()
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