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Abstract. We review threat models used in the evaluation of anonymity
systems’ vulnerability to traffic analysis. We then suggest that, under the
partial adversary model, if multiple packets have to be sent through these
systems, more anonymity can be achieved if senders route the packets
via different paths. This is in contrast to the normal technique of using
the same path for them all. We comment on the implications of this for
message-based and connection-based anonymity systems. We then pro-
ceed to examine the only remaining traffic analysis attack – one which
considers the entire system as a black box. We show that it is more diffi-
cult to execute than the literature suggests, and attempt to empirically
estimate the parameters of the Mixmaster and the Mixminion systems
needed in order to successfully execute the attack.

1 Introduction

Traffic analysis is a procedure for inferring relationships between individuals
from their communication patterns. In this paper we examine traffic analysis in
the context of anonymous communication systems which are designed to hide
those very relationships.

The anonymity properties provided by different anonymity systems vary.
Some, e.g. DC-nets, provide sender and/or receiver untraceability by hiding the
very existence of traffic between their users, even against the most powerful
adversaries3. However, users of such systems typically incur overwhelming com-
munication costs, so we do not consider them here.

Instead, we focus on systems that provide unlinkability, e.g. Mixminion [3]
and Tor [4], which only aim to prevent an adversary from linking together
the sender and receiver of messages. Recent literature contains a number of
exact [5,6] and statistical [7,8,9,10] traffic analysis attacks against anonymous
communication systems, all based around intersection attacks. Based on these
results, it can be argued that low latency communication is impossible to per-
form anonymously. Although given enough traffic, the attacker can compromise
the users’ anonymity, we argue that attention should be focused on finding the
3 see [1] and [2, Chapter 2] for a more precise definition.
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cases where anonymity is provided, and ensuring that practical cases fall into
this category.

2 Threat Models for Traffic Analysis

Message-based systems [11,3] are believed to provide good anonymity proper-
ties against a global passive adversary, as long as the sender only transmits one
message through the system [3]. This is, however, unrealistic, both in the con-
text of email and with web browsing. Hence, we consider the case where each
sender transmits at least one message and possibly many more, which introduces
the potential for intersection attacks [5,6,7,8,9,10]. Connection-based anonymity
systems, such as Tor [4], are thus vulnerable, as are remailers, such as Mixmas-
ter [11] and Mixminion [3], when large files are sent.

In this section, we also assume that each sender communicates with exactly
one receiver and that no receiver is communicated to by more than one sender.
Initially, we assume that all packets from a sender to a receiver are sent via the
same route (i.e. via the same sequence of nodes), but by relaxing this restriction
later, we show that greater anonymity can be provided. We now proceed to re-
view some threat models which are appropriate in these settings and the attacks
which are made possible.

2.1 Global Passive Adversary

The global passive adversary is perhaps the most popular threat model used to
evaluate anonymity properties of anonymity systems, see for instance [2,6,10].
While it can be argued that this threat model is stronger than realistically
needed, a system that withstands this adversary is necessarily secure against
a weaker attacker. In the global passive model, the adversary logs all traffic,
both to and from all mixes and all users. The attacker’s goal is to link incoming
connections to outgoing connections.

Perhaps the simplest traffic analysis attack is packet counting. The situation
shown in Figure 1 can be considered as an example of large files being sent
through Mixminion. Here, the adversary can deduce that the messages from C
were sent to F. It is interesting to note that even if we remove the restriction that
each user must have exactly one communication partner, the adversary can still
show that at least one message is sent from C to F. However, by splitting traffic,
C’s anonymity can be improved, at the cost of delaying when the reassembled
message will arrive. For illustration, we have used routes of length 2, but this
can be extended, with the constraint that the last node of all routes must be the
same, so as to allow the message to be reassembled.

If C splits his traffic over two different routes, as is shown in Figure 2, the
adversary can still link C to F. However, if we now remove the restriction of one
communication partner per user, then from the attacker’s perspective, C may
also be communicating with D and E, and it is A and B who are communicating
with F. While this seems to make a difference in theory, in practice, by observing
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Fig. 1. Example network topology with attacker’s scope of monitoring shown
in dashed ellipses. From the attacker’s perspective, there are two possibilities:
{A–D, B–E, C–F} and {A–E, B–D, C–F}, where each user has exactly one
communication partner. If this restriction is lifted, then there are two more
possibilities: {A–D, B–F, C–E, C–F} and {A–F, B–D, C–E, C–F}. However, in
all these cases, C must have sent at least one message to F, and so is offered no
anonymity
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Fig. 2. Unlike Figure 1, C is provided with anonymity as there is another possi-
bility: {A–F, B–F, C–D, C–E}. The thicker line is the new link, and we assume
the attacker does not know whether there are one or two connections running
over each link, only the number of packets



the sending patterns of C, the attacker is likely to be in a good position to deduce
whether the two messages C sends are destined for the same receiver or not, hence
our assumption above.

2.2 Adaptive Adversary

A non-global adversary can achieve the same results as a global adversary by
being able to move points of monitoring, taps, fast enough. We call such an
adversary adaptive. In Figure 3, Attack 1 consists of first monitoring M1 then
after establishing that the target stream, from A, goes to M4, moving the tap
there to establish the destination. This is more powerful than only monitoring
inputs and outputs to the mix network, shown in Attack 2, as will be discussed
further below.
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Fig. 3. Adaptive partial adversary

In the global passive and adaptive adversary scenarios, intersection attacks
are extremely difficult to defend against, so instead we consider more realistic,
weaker threat models and examine how their consideration might affect the
design of anonymity systems.

2.3 Partial Adversary

We have shown above that a global passive adversary can compromise anonymity
through intersection attacks. As this threat model is usually considered stronger
than what most realistic adversaries are capable of, this does not necessarily
mean that anonymity cannot still be provided in practice. By relaxing the threat
model, we can show what users can do to avoid their anonymity being compro-
mised by a realistic adversary. In the next section we consider one particular
type of partial adversary, the circumstances in which they may be encountered
and how to defend against them.

The partial adversary does not monitor all links. He has a limited number of
taps and may put these at some, but not all, points on the network. For example,



some links may be outside his jurisdiction. Where he will place these depends
on his goals. If he is interested in a particular user, he would put a tap near this
user. However, if he does not know which users he is interested in or is interested
in all users, he would be better advised to put the taps near as many mixes as
possible, as usually there are fewer mixes than users. The key property that
distinguishes the partial and the global adversary is that the partial adversary
is not able to monitor all mixes or all users. Alternatively, there is at least one
mix which some of the users can send traffic to, without it being observed by
the attacker.

An additional restriction on the threat model would be to impose a similar
restriction on the receiver side: there is at least one mix which can send messages
to at least some receivers without them being observed.

As shown in Figure 4, even if an intersection attack can separate two links,
if the attacker does not have a full view of all inputs and output, he cannot be
sure that there is not another “2-message” connection which is unobserved. This
scenario could occur if the taps are placed near M1, D and E, but the other
mixes are far away from the attacker’s control.

However, if the links B to M1 and M4 to E both have, for example, exactly
1561 messages, then the probability of there being another connection which
is unobserved, happening to have exactly the same number of packets, is low
and hence the attacker can link B to E. This is, of course, a typical traffic
confirmation attack, where the attacker confirms a previously held suspicion on
sender/receiver linkage. We investigate this further in Section 3.
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Fig. 4. Partial adversary view

3 Defeating the Partial Adversary

Our method of defending against the packet-counting attack presented in the
previous section is based on sending the packets via different routes through
the network. First, we present the intuition, and then a concrete scheme to-
gether with an evaluation of anonymity. Finally, we note that not only does this
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Fig. 5. Here, if B chooses M1 rather than M3 as his entry node, the attacker can
establish that B communicates with E, and that A communicates with D

scheme protect against the packet counting attack, but also makes various flow
correlation [10] and timing attacks [12] harder.

Our definition of the attacker ensures that they will not be monitoring all
the mixes to which messages will arrive from users. If the users find out which
of the mixes these are, they can simply send all their traffic through them.
However, this is unlikely to be the case. Hence, if a sender forwards all his traffic
to a receiver via the same sequence of mixes (chosen at random), there is some
probability that the traffic from him to the first mix will not be observed and
hence he will remain undetected. This probability is 1 − a/n where a is the
number of entry mixes monitored by the attacker and n is the total number of
mixes. However, with probability a/n, the sender’s traffic is observed, allowing
the attacker to mount the simple traffic confirmation packet-counting attack and
compromise the anonymity of the sender. For an exposition of this and related
issues see [13,14].

Our aim here is to present a scheme which significantly increases the proba-
bility of a sender not being traced by the attacker. To see why sending the traffic
via different routes (and, crucially, via many different first nodes) helps, consider
the following example.

In Figure 5, B has chosen a first mix which is being monitored. Since he is
sending more data than A, and the output is monitored, the adversary knows
that B is communicating with E. Of course, if B chose M3 then he would be
protected, but rather than relying on chance, if he splits the data between M1

and M3, as shown in Figure 6, the attacker only observes B sending one packet.
Thus, the attacker cannot deduce that deduce that B really sent 2 packets and
hence must have communicated with E.

Of course, not everything is as simple as might seem from the trivial examples
above, but the intuition is clear – we want a scheme which hides, from a partial
adversary, the number of messages sent. Several questions arise. Firstly, how
should the sender choose routes for his packets, and more specifically, how many
packets should he send through each of the entry nodes. Secondly, how much
anonymity is really gained from this? We attempt to answer these questions in
the next section.
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Fig. 6. By splitting the data, B hides the fact that he communicates with E,
despite one of the entry nodes being monitored. The attacker is unsure whether
B is communicating with E or whether A or an unmonitored C are

3.1 Choosing Routes

We have made no assumptions about how the attacker monitors the messages
inside the mix network, yet we want messages to be mixed to best defeat the
attacker’s monitoring. It is intuitively clear that after having chosen the first
mix, the routes for the packets should be chosen uniformly at random, and
independently from each other. The remaining problem is then how to pick the
first mix on each of these routes.

Suppose the sender has s packets to send and the attacker is monitoring a
out of n mixes. Sending s/n packets to each mix is not a good approach, as the
attacker will observe a× s/n packets and, knowing the fraction of the mixes he
is monitoring, can deduce s. A better scheme is to send ci packets, to each mix
i, where ci is chosen from an exponential distribution. Hence, the probability of
sending x packets to a particular mix is:

P (x) = n/se−n/sx

Note that both the mean and the variance of this distribution is s/n. Let C be
the set of ci, for i in 1 . . . n. Call s′ =

∑
i ci. Now if s′ > s, the sender can simply

can add dummy packets to make up the number of packets to s′. If, however,
s < s′, the algorithm is rerun. Note that the probability of

∑
i ci ≥ s = 0.5.

Suppose the attacker observes some (s−) messages, from which he calculates
the mean and the standard deviation of the above exponential distribution in
the usual fashion, call these ŝj . Hence the total number of messages observed by
the attacker is aŝj . His goal is to compute an estimate for s, the total number
of messages sent. Ideally, the attacker would like to calculate the probability
distribution over ŝ and then try to mount a probabilistic version of the packet
counting attack. An easier way for him to proceed is to observe the upper and
lower bounds on s, based on the his observation. The lower bound of the at-
tacker’s estimate is s− as all the mixes the attacker was not able to observe
could have received 0 packets and the upper bound is infinity. The latter is not



helpful, so we provide an alternative estimate based on a rough approximation
of the 3 standard deviation event.

Based on his observations, the attacker’s estimate of the total number of mes-
sages sent by the user is nŝj . The attacker’s estimate of the standard deviation
of the exponential distribution used by the sender is also nŝj . Hence, the 3 stan-
dard deviation upper bound on the number of packets sent is nŝj + 3ŝj

√
n− a.

Note that this estimate is based on the assumption that the numbers of packets
sent to each mix were generated independently. Of course, they were not – if the
total number of packets to be sent to the mixes was lower than the size of the
actual message, the algorithm is rerun.

The attacker might try to make use of this by performing a Bayesian es-
timation. This requires taking a known distribution of file sizes sent through
anonymous communication systems as a prior and using the observations to
come up with a refined distribution. This is left for future work, mainly due to
the lack of a good prior.

We have assumed that the attacker observes all the receivers, so the ano-
nymity set of our target sender is the set of receivers who have received more
than nŝj packets in the interval from when the sender sent the first message, to
the attackers estimate of when all the sent messages have arrived. The length of
this period varies according to the system in question; for example, in Mixminion
this would be a few days after the packets were sent; see Section 5.1.

However, splitting messages over several routes is not always the best option.
If the sender can a priori determine that, even after splitting his message, the mix
network will not provide him with anonymity, he should send all the messages
through a single first mix. For example, this would be the case if there are no
other users of the system. This will maxmise the probability that none of his
messages will pass through an observed mix. The tradeoff to be made here is
beyond the scope of this paper. The route selection algorithm could also take
into account the administrative domain that nodes are in, as discussed in [15],
however we do not consider this option here.

We claim that we have now reduced the effectiveness of the packet counting
attack. However, there are more attacks to deal with. We examine one particular
attack which has recently been presented by Danezis [12,16]. Essentially, the
attacker takes a signal which represents a stream of input traffic, and a model of
the mix, and convolves the two together. The result defines the expected output.
The attacker can compare this with the output traffic streams of the mix and
determine which of these matches. The attack assumes that the incoming traffic
is distributed according to a Poisson distribution and Danezis has shown the
attack to be effective in a simulated environment under these assumptions.

Our scheme above prevents this attack being mounted on a per-mix basis: a
stream of packets incoming to the first mix will scatter randomly between the
outgoing links as the routes of the packet were chosen independently. Hence,
rather than analysing each mix individually, the attacker has to view the entire
mix network as one supermix. Even if the attacker can see all inputs and outputs
to the supermix, this is weaker than the global passive adversary threat model,



as shown in Figure 7. In Attack 1, the attacker can clearly follow the data from
A to D as no mixing is taking place. However in Attack 2, the supermix formed
by M1 −M4 does mix the two streams.
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Fig. 7. Adaptive partial adversary versus supermix analysis

The mix analysed in [12] is expressed via a delay characteristic. The delay
characteristic is the probability distribution over the possible delays experienced
by incoming messages. To mount this attack, we therefore need to know the
characteristic delay function of our anonymity system abstracted as a mix.

There are two possible approaches: either to combine models of mixes into
a model of a complex mix or to empirically measure the characteristics of the
system as a whole. We present both approaches, and show that they run into
difficulties. While this does not prove that such attacks are impossible to mount,
they do bring into question their effectiveness in realistic environments.

4 Deriving Delay Properties of “Complex Mixes”

As Serjantov et al. observed in [17], there are two main types of mix delay
strategies: timed and threshold. Here we attempt to suggest characteristic delay
functions for combinations of each of these types of mixes.

4.1 Timed Mixes

We assume that message arrival is uniformly distributed over the time period t,
in other words, when the user sends his message, he is not aware of when the mix
flushes, or he does not take that knowledge into account. In this case, the delay
characteristic of a timed mix is rather simple – it is the uniform distribution
between 0 and t. Note that the delay characteristic of a cascade of i timed mixes
is a uniform distribution between 0 and a point in the interval between t and ti
(depending on how the mixes are synchronised).



The characteristic delay function for a timed pool mix, however, depends
on traffic levels which, as shown in [18] do not follow a well known probability
distribution. This is because the probability of a message remaining in the mix
depends on how many messages arrive at the mix during the same round. The
only easy case here is if the attacker assumes that the traffic arrives at a constant
rate. In this case, the characteristic delay function is a discretized geometric
distribution. If the delay is measured in rounds

P (delay = i) = pi−1q

where p = n/n + f , n being the constant number of messages in the mix at
each round and f the constant size of the pool. Of course, the above is also the
probability of ti seconds delay.

The characteristic function of a cascade of m timed pool mixes is:

P (delay = i) =
(

m
i−m

)
pi−mqm

If a timed pool mix works on the basis of having a constant probability, p, of
forwarding a message (a variant of the Timed Dynamic Pool Mix [11]), then its
characteristic delay function is exactly the one given above. Nevertheless, these
examples are slightly contrived. A more sensible mix would have a minimum
pool or alter the probability of forwarding each message, based on how many
messages are inside the pool [19]. From this we can safely conclude that deriv-
ing accurate characteristic delay functions for realistic timed mixes is infeasible
without knowledge of the distribution of message arrivals.

4.2 Threshold Mixes

The situation is not any better with threshold mixes. Calculating the character-
istic delay function for a simple threshold mix already requires assumptions on
traffic and hence has the problems detailed above and in [18].

As one might expect, under the constant traffic assumption, the character-
istic delay of the threshold pool mix, in rounds, is the same as that of the
corresponding timed pool mix.

The characteristic delay function of a network of threshold mixes requires not
only assumptions about traffic arrivals to the network, but also about the choice
of routes that users take for their messages. Indeed [2, Chapter 6] suggests that
calculating the delay of a mix network of threshold mixes is as hard as calculating
the anonymity of it.

5 Estimating Delay Properties of Complex Mixes

One possible approach which can be used in practice is simply to sample the
network under appropriate traffic conditions (i.e. those similar to the time when
the target message is sent) and hence obtain the characteristic delay function. In



order to test our assumptions and evaluate the consequences of our proposals,
we attempted to measure the effective delay function of the Mixmaster and
Mixminion “supermix” over 26 days. The client software was run in its default
configuration, except for Mixminion, where we forced the path length to 4 (by
default it varies). To avoid our probe messages interfering which each other, we
kept no more of our messages in the system than there are mixes. Latency data
was collected by a Python [20] script and graphed in GNU R [21], based on a
design described in [22]. This data is available for download4.

We would, of course, have liked to evaluate the characteristic delay function
of a more real-time anonymity system than Mixmaster or Mixminion, but the
obvious candidate, Tor, optimises for efficiency and does not aim to protect itself
from this attack. Hence, in order to demonstrate the difficulty of calculating the
characteristic delay function, we have resorted to attempting to estimate it for
the above systems.

5.1 Results

The distribution of measured latencies is shown in Figure 8, and the change of
latency over time is shown in Figure 9, along with the distribution of latencies
in two selected intervals. A statistical summary of the full data set, as well as
the selected intervals, is shown in Table 1.
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Fig. 8. Latency measurements of Mixmaster and Mixminion

As can be seen, Mixmaster has a larger median latency than Mixminion. This
is because Mixminion is currently in alpha so, by default, nodes use a 10-minute
timed mix. The algorithms used by Mixminion nodes at time of writing is shown
in Table 2. Although the latency for most messages is below the 4×10 min limit
expected for a path length of 4, 44% are above. Some of these are explained
by the nodes using non-default mixing algorithms, but others are due to nodes
which fail and later recover.
4 http://www.cl.cam.ac.uk/users/sjm217/projects/anon/
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Table 1. Summary of data collected

Mixmaster latency (hours) Mixminion latency (hours)

Overall Range 1 Range 2 Overall Range 1 Range 2

Min. 0.22 0.25 0.22 0.08 0.08 0.08
Q.1 1.49 1.54 1.30 0.36 0.36 0.34

Med. 2.70 2.91 2.60 0.55 0.51 0.51
Q.3 5.23 5.36 4.72 2.05 1.75 2.17

Max. 123.70 44.78 25.79 136.40 100.10 136.40

Mean 5.10 4.78 4.09 4.01 3.27 7.76

Table 2. Mixminion node mixing algorithms. A timed mix flushes all messages
from the pool after every mix interval. A dynamic pool, as is used in Mixmaster,
flushes a randomly selected set of messages after every mix interval, such that
the pool size never falls below the pool minimum size, and the percentage of the
pool sent out is no more than the pool rate. A binomial dynamic pool flushes
a randomly chosen number of messages, based on the number that would be
flushed using the dynamic pool algorithm

Number of nodes Mixing algorithm

25 Timed. Mix interval: 10min (default configuration)
2 Timed. Mix interval: 15min
1 Timed. Mix interval: 20min
1 Timed. Mix interval: 30min
1 Dynamic pool. Mix interval: 30 min,

Pool Rate: 50%, Pool Minimum Size: 5
1 Binomial dynamic pool. Mix interval: 10 min,

Pool Rate: 70%, Pool Minimum Size: 3
1 Binomial dynamic pool. Mix interval: 30 min,

Pool Rate: 50%, Pool Minimum Size: 5



6 Conclusion

In this paper we examined the problem of sending a large message (more pre-
cisely, a sequence of many messages) through mix networks. Firstly, we presented
a well-defined notion of a partial adversary threat model. We then show that
in the presence of this adversary, sending packets via different routes through a
mix network yields increased anonymity. To perform a packet counting attack,
the attacker must now know the total number of fragments a message was split
into, but by distributing the fragments over entry mixes using a non-uniform
distribution, a partial adversary is uncertain as to the total. Finally, we demon-
strate that intersection attacks relying on knowledge of the characteristic delay
function, while powerful, are more difficult to perform on deployed mix designs
than previously thought. This is due to the dependency of message latency on
input traffic, which is not known and difficult to estimate. This supports previous
observations on the unpredictability of traffic in anonymity systems.
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