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ABSTRACT
Informally, a communication protocol is sender k - anony-
mous if it can guarantee that an adversary, trying to de-
termine the sender of a particular message, can only narrow
down its search to a set of k suspects. Receiver k-anonymity
places a similar guarantee on the receiver: an adversary, at
best, can only narrow down the possible receivers to a set of
size k. In this paper we introduce the notions of sender and
receiver k-anonymity and consider their applications. We
show that there exist simple and efficient protocols which
are k-anonymous for both the sender and the receiver in a
model where a polynomial time adversary can see all traffic
in the network and can control up to a constant fraction of
the participants. Our protocol is provably secure, practical,
and does not require the existence of trusted third parties.
This paper also provides a conceptually simple augmentation
to Chaum’s DC-Nets that adds robustness against adver-
saries who attempt to disrupt the protocol through perpet-
ual transmission or selective non-participation.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Data communications; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Network
communications; E.4 [Coding and Information Theory]:
Formal models of communication

General Terms
Design, Performance, Reliability, Security

Keywords
Anonymity, Anonymous Communication, Untraceable Com-
munication, Cryptographic Protocols, Privacy, Multiparty
Computation
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1. INTRODUCTION
Anonymous or untraceable communication protocols have

been studied extensively in the scientific literature (e.g. [4,
5, 16, 19]). These protocols address the problem of conceal-
ing who communicates with whom, as in the case of letters
from a secret admirer. The adversary, trying to determine
the sender or recipient of a message, is allowed to see all the
communications in the network, so a protocol for anony-
mous communication even allows Bob to send a secret love
letter to Eve, the network administrator. If used in prac-
tice, anonymous communication would have many impor-
tant applications such as guaranteeing anonymous crime tip
hotlines or allowing “whistle blowers” inside corrupt orga-
nizations to leak secrets to the press.

The goal is usually to guarantee full anonymity: an ad-
versary looking at the communication patterns should not
learn anything about the origin or destination of a particu-
lar message. To gain efficiency we concentrate on a weaker
goal, k-anonymity: the adversary is able to learn something
about the origin or destination of a particular message, but
cannot narrow down its search to a set of less than k par-
ticipants. In other words, k-anonymity guarantees that in
a network with n honest participants, the adversary is not
able to guess the sender or recipient of a particular message
with probability non-negligibly greater than 1/k, where k
is a constant smaller than, but otherwise not related to n.
We show that, in our adversarial model, there exists a k-
anonymous communication protocol that is far simpler and
more efficient than any known fully anonymous communi-
cation protocol.

While k-anonymity is a weaker guarantee, it is still suf-
ficient for a variety of applications. For example, in the
United States legal system, 2-anonymity would be enough to
cast “reasonable doubt,” thus invalidating a criminal charge,
while 3-anonymity would be enough to invalidate a civil
charge, in the absence of other evidence. This is especially
relevant after a federal judge in the United States ordered
Verizon Communications, a large ISP, to disclose the iden-
tity of an alleged peer-to-peer music pirate — a legal de-
cision that could make it easier for the music industry to
crack down on file swapping [3]. If the participants in the
peer-to-peer network were communicating k-anonymously,
the music industry could not prosecute individuals in this
manner. k-anonymity is also enough for the protection of
privacy in everyday transactions, as it effectively breaks data
profiling techniques.1

1The concept of k-anonymity in fact comes from the privacy
literature [18].
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The protocol presented in this paper is extremely efficient
and provably secure in a strong adversarial model: we as-
sume that the adversary can see all the communications be-
tween the participants and can control any constant frac-
tion (up to 1/2) of the participants. Participants owned by
the adversary can act arbitrarily and attempt to ruin the
communication protocol in any possible way — i.e., the ad-
versary not only tries to determine the sender or recipient
of particular messages, but also tries to render the anony-
mous communication protocol useless. We assume the ad-
versary is computationally bounded (polynomial time) and
non-adaptive (the adversary must choose which participants
to corrupt before the execution of the protocol). We also as-
sume that the network is not adversarially unreliable: mes-
sages between communicating parties are always delivered.2

This assumption is mostly for simplicity, as our protocol can
be used on top of schemes that guarantee reliable communi-
cation in an adversarially unreliable setting (e.g. [7]) at the
expense of efficiency.

For the most part, the study of anonymous communica-
tion has focused on efficiency rather than on provable secu-
rity, and many of the current systems fail when confronted
by sufficiently powerful adversaries [20]. Our protocol is
provably secure in a strong adversarial model and achieves
part of its efficiency by allowing the anonymity guarantee to
vary: k can be any number between 1 and n (the number of
participants in the network). The efficiency of our protocol
is related to the size of k and for small values of k the proto-
col is efficient enough to be used in practice. However, it is
important to mention that, while k-anonymity is sufficient
in many settings, there are cases where full anonymity is
required (e.g. ransom notes). If k equals n (i.e., in the case
of full anonymity) our protocol is simpler and as efficient as
any known protocol that is provably secure in our adversar-
ial model. In this way, our protocol can also be viewed as a
conceptually simple and efficient augmentation to Chaum’s
DC-Nets that adds robustness against adversaries who at-
tempt to disrupt the protocol through perpetual transmis-
sion or selective non-participation.

Related Work
Below we describe a few of the most influential solutions to
the anonymous communication problem and compare them
to our proposal.3

DC-Nets [4, 19]. DC-Nets is an anonymous broadcast
protocol that bases its anonymity on the strength of a se-
cure multiparty sum computation. In this fashion, it is one
of the few systems that provides provable security in the
absence of trusted parties. Although the original system by
Chaum [4] was susceptible to certain attacks, a later variant
by Waidner [19] provides an elaborate system of traps and
commitments that guarantees robustness and anonymity.
However, the poor scalability of DC-Nets makes it unsuit-
able for medium or large-scale use. In particular, in a net-
work of n users, DC-Nets incurs a cost of Ω(n3) protocol
messages per anonymous message in every case. Our pro-

2As long as the network is not adversarially unreliable, there
exist protocols (such as TCP) that provide reliable delivery.
3This section is only meant to provide a sample of the pre-
vious work so as to put our proposal in context; it is not
meant to provide a complete description of the literature.
See [9] for a more thorough listing.

tocol is similar to DC-Nets, but with a much simpler and
efficient method of guaranteeing robustness, better scaling
properties, and the ability to amortize message complexity
over several anonymous messages. Our adversarial model is
similar to that assumed in the DC-Nets literature except
that we restrict the adversary to run in polynomial time.

Mix-Nets [5] and Onion Routing. Mix-Nets, intro-
duced by David Chaum in 1981, was one of the first con-
cepts for anonymizing communication. The idea is that a
trusted “Mix” shuffles messages and routes them, thus con-
fusing traffic analysis. Chaining Mixes together to form a
path, combined with Mix-to-Mix (Onion Routing) and end-
to-end encryption, offers a form of provable security against
a completely passive adversary [5]. Mix-Nets requires the
existence of semi-trusted nodes: security is guaranteed as
long as one Mix (out of a small constant number of them)
is honest.

In every Mix-Nets proposal, an active adversary who par-
ticipates in the system is able to degrade the anonymity of
selected messages and users with non-negligible probability
[14], and also degrade efficiency through excessive, anony-
mous usage of its capabilities [12] and selective, undetectable
non-participation [20].

Compared to Mix-Nets protocols, our solution incurs
fewer network latencies, requires no special trusted nodes,
and is provably secure against non-participating active ad-
versaries. However, our solution incurs higher communica-
tion and computational complexity.

Crowds [16]. Similar to Mix-Nets, Crowds provides
paths to disguise the originator of a message. Unlike Mix-
Nets, however, paths in Crowds are determined randomly
by the machines through which a message passes, rather
than by the originator of the message. Crowds provides
sender probable innocence against an adversary who controls
a certain fraction of the participants.4 However, Crowds
provides no protection against a global eavesdropper. k-
anonymity can be seen as a further refinement of probable
innocence and in particular, our protocol for the case of 2-
anonymity is competitive with Crowds in terms of round
complexity, slightly worse in communication complexity and
incurs much heavier computational costs, while providing
provable security in a much stronger adversarial model.

CliqueNet [17]. CliqueNet combines small DC-Nets
with a routing layer to mitigate the scalability problems of
DC-Nets while also preserving some of its anonymity guar-
antees. CliqueNet has the undesirable feature, however,
that an adversary who controls � network nodes can com-
pletely compromise the anonymity of � − 1 other nodes of
its choice. Furthermore, CliqueNet’s routing layer induces
a high amount of unnecessary network latency and is not
secure against non-participation, allowing an adversary who
controls a few nodes to partition the network. Our protocol
is similar to CliqueNet in that we also divide the network
into small DC-Nets-like components, but different in that
we provide provable security against strong adversaries.

4A protocol provides sender probable innocence if the re-
ceiver cannot identify the sender with probability greater
than 1/2.
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Organization of the Paper
Section 2 presents the basic cryptographic notions and defi-
nitions we will need for the paper. Section 3 introduces the
definitions for k-anonymous communication, Section 4 intro-
duces the novel protocol that achieves k-anonymity for both
the sender and the receiver, and Section 5 delineates how
to construct a communications network that can guarantee
k-anonymity. Finally, Section 6 concludes with a discussion
and some open questions.

2. PRELIMINARIES

2.1 Notation
A function µ : � → [0, 1] is said to be negligible if for

every c > 0, for all sufficiently large n, µ(n) < 1/nc. Let
S be a set, then x ← S denotes the action of choosing x
uniformly from S. Uk denotes the set of k-bit strings. We
denote the set of integers {1, . . . , n} by [n]. We will use �m

to denote the additive group of integers modulo m, and �∗
m

to denote the multiplicative group of integers modulo m.
When we say split x ∈ �m into n random shares s1, . . . , sn

we mean choose s1, ...sn−1 uniformly at random from �m

and set sn = x − (s1 + · · · + sn−1) mod m. For parties P
and Q, the notation P −→ Q : M denotes party P sending
message M to party Q.

2.2 The Model
We assume a network of n parties {P1, . . . , Pn}, of which

a fraction β < 1/2 are controlled by a non-adaptive poly-
nomial time adversary, who may also monitor the commu-
nications between all parties. We assume the existence of
a trusted public-key infrastructure which allows secure au-
thenticated channels between all pairs of parties. Otherwise,
parties under the control of the adversary may behave ar-
bitrarily (the remaining honest parties are constrained by
the protocol). We also assume that the network is reliable:
messages between parties are always delivered.

2.3 Pedersen Commitments
Let p and q be primes such that q divides p − 1, and

let g, h ∈ �
∗
p have order q. (It is easy to see that both g

and h generate the unique subgroup of order q in �∗
p.) The

following commitment scheme will be used throughout the
paper; it is due to Pedersen [13] and is based on the difficulty
of finding logg(h) (all the multiplications are over �∗

p):

• To commit to s ∈ �q, choose r uniformly from �q and
output Cr(s) = gshr.

• To open the commitment, simply reveal s and r.

For any s, the commitment Cr(s) = gshr is uniformly dis-
tributed over the unique subgroup of order q in �∗

p, so that
Cr(s) reveals no information about s. Furthermore, the
committer cannot open a commitment to s as s′ �= s un-
less she can find logg(h). Hence, this is a perfectly hiding,
computationally binding commitment scheme. In addition,
this commitment scheme is homomorphic: given commit-
ments Cr1(s1) and Cr2(s2), we have that Cr1(s1)Cr2(s2) =
Cr1+r2(s1 + s2).

2.4 Zero-Knowledge Proofs
Informally, a zero-knowledge proof is a protocol which al-

lows a prover program P to convince a verifier program V

of the veracity of a statement while giving the verifier no
additional knowledge. For now we will only require security
in the case of an honest verifier (i.e., the verifier follows the
program V ). There exist standard techniques ([10], [2]) to
convert the particular type of honest-verifier zero-knowledge
proof that we will use into a proof which is secure even
against a dishonest verifier.

Definition 1. A protocol (P, V ) is honest verifier zero-
knowledge if there is an efficient program S (a simulator)
such that the output of S(x) and the view of V upon inter-
action with P (x) are indistinguishable.

An example is the following protocol for proving knowl-
edge of the discrete logarithm of x = hr mod p (where q
divides p− 1 and p, q are prime) originally due to Chaum et
al. [6]:

Protocol 1. Zero-knowledge proof of knowledge for dis-
crete logarithms

1. P picks σ ← �q,
P −→ V : y = hσ mod p

2. V −→ P : z ← �q

3. P −→ V : w = rz + σ mod q

4. V accepts if xzy = hw

The honest-verifier simulator for this protocol first selects
the values z, w ← �q and sets y = hw/xz mod p, then out-
puts the conversation y, z, w. A prover can cheat in this
protocol only with very small probability, 1/q.

2.5 Secure Multiparty Sum
A secure multiparty addition protocol allows parties P1,

. . . , Pn, each with a private input Xi ∈ �m, to compute
X = X1 + . . . + Xn in such a way that Pi, regardless of
its behavior, learns nothing about Xj , i �= j, except what
can be derived from X. The following commonly-known
scheme implements secure multiparty addition: each party
Pi splits Xi into n random shares si,1, . . . , si,n such that�

j si,j = Xi and sends share si,j to party j; later all parties
add every share that they have received and broadcast the
result. It is easy to see that the sum of all broadcasts equals
X1 + . . . + Xn, and that it is impossible for party j to learn
anything about Xi (for i �= j).

For the rest of this paper, we use the following modifi-
cation of the above scheme. The commitments help ensure
that all parties adhere to the protocol (e.g., parties shouldn’t
be able to cheat by sending inconsistent shares):

Protocol 2. Secure Multiparty Sum

1. Commitment Phase:

• Pi splits Xi ∈ �q into n random shares si,1, ..., si,n

• Pi chooses ri,j ← �q

• Pi computes commitments Ci,j = Cri,j (si,j)

• Pi broadcasts {Ci,j : 1 ≤ j ≤ n}
2. Sharing Phase:

• For each j �= i,
Pi −→ Pj : (ri,j , si,j).
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• Pj checks that Cri,j (si,j) = Ci,j

3. Broadcast Phase:

• Pi computes the values Ri =
�

j rj,i mod q and

Si =
�

j sj,i mod q

• Pi broadcasts (Ri, Si)

• All players check that CRi(Si) =
�

j Cj,i mod p

4. Result:
Each player computes the result as X =

�
i Si mod q,

computes R =
�

i Ri mod q and checks that CR(X) =�
i,j Ci,j mod p

Note that as long as every party transmits something, the
broadcast does not need to be reliable (i.e. it does not mat-
ter if an adversary conspires to make two different players
get different values); because of the use of commitments, ei-
ther some value fails a check for some honest player, or the
final result is identical to another instance of the protocol
where the adversary does not send different messages (a rig-
orous proof of this fact appears in the Appendix). This pro-
tocol is susceptible to only one kind of disruptive attack: se-
lective non-participation, in which an adversary either does
not send some protocol messages to a participant or claims
that it has not received any message from that participant.
As the protocol is stated, there is no way to tell whether
the sender failed to send a message or the receiver is falsely
claiming that it didn’t receive it. Selective non-participation
will be dealt with in later sections.

Secure multiparty addition and anonymous communica-
tion are related (an observation which seems to be due to
David Chaum and forms the basis of DC-Nets), in that a
protocol for secure multiparty addition can be used to per-
form anonymous broadcast. Assume that party j wants to
broadcast the message Xj �= 0 anonymously, while the other
parties do not wish to broadcast anything; then by perform-
ing a multiparty addition with Xi = 0 (for i �= j), all the
parties learn X1 + . . . + Xn = Xj , but nobody learns where
Xj came from. If more than one party tries to transmit at
the same time, however, a collision occurs and the parties
have to try again. For this reason DC-Nets use a com-
plicated reservation mechanism to keep the adversary from
jamming the channel: jamming can occur when the adver-
sary controls a participant and simply sends a message at
every time step. Our protocol is also based on secure mul-
tiparty sum computations, but one of the novel aspects of
our work is the relatively simple mechanism that we use to
prevent the adversary from jamming the channel.

3. DEFINITIONS
An anonymous communication protocol for message space
M is a computation among n parties P1, . . . , Pn, where
each Pi starts with a private input (msgi, pi) ∈ (M× [n])∪
{(nil, nil)}, and each party terminates with a private out-
put from M∗. To communicate, time will be split into
rounds and the protocol will be run at each round. Intu-
itively, at the end of a round each Pi should learn the set of
messages addressed to him ({msgj : pj = i}), but not the
identity of the senders.

We let H ⊂ {P1, . . . , Pn} denote the set of honest parties.
We denote by P(P1(msg1, p1), . . . , Pn(msgn, pn)) the ran-
dom variable distributed according to the adversary’s view

of the protocol P when each Pi has input (msgi, pi). We de-
note by P(Pi(msgi, pi), ∗) the adversary’s view of P when Pi

has input (msgi, pi) and the other inputs are set arbitrarily.

3.1 Full Anonymity

Definition 2. A protocol P is sender anonymous if for
every pair Pi, Pj ∈ H , and every pair (msg, p) ∈ (M ×
[n])∪{(nil, nil)}, P(Pi(msg, p), ∗) and P(Pj(msg, p), ∗) are
computationally indistinguishable.

That is, a protocol is sender anonymous if the adversary
may not distinguish between any of the honest parties as
the sender of a message, regardless of who the receiver is;
i.e., the adversary “gains no information” about the sender.

Definition 3. A protocol P is receiver anonymous if for
every P ′ ∈ H , for every msg ∈ M and every Pi, Pj ∈ H ,
P(P ′(msg,Pi), ∗) and P(P ′(msg,Pj), ∗) are computation-
ally indistinguishable.

According to the previous definitions, the trivial protocol
in which no party transmits anything is both sender and
receiver anonymous. Non-triviality is captured by Definition
6 below.

Assuming that the protocol is non-trivial (i.e., useful),
sender anonymity requires every honest party, even if they
have no message as an input, to send at least one protocol
message per anonymous message delivered.Thus any proto-
col which is sender anonymous has a worst-case lower bound
of n protocol messages per input message, since in the worst
case, all parties but one have input (nil, nil). If n is large,
this lower bound makes it unlikely that a system providing
full anonymity can be fielded in practice.

3.2 k-Anonymity

Definition 4. A protocol P is sender k-anonymous if it
induces a partition {V1, . . . , Vl} of H such that:

1. |Vs| ≥ k for all 1 ≤ s ≤ l; and

2. For every 1 ≤ s ≤ l, for all Pi, Pj ∈ Vs, for every
(msg, p) ∈ (M× [n]) ∪ {(nil, nil)}, P(Pi(msg, p), ∗)
and P(Pj(msg, p), ∗) are computationally indistinguish-
able.

That is, each honest party’s messages are indistinguishable
from those sent by at least k − 1 other honest parties.

Definition 5. A protocol P is receiver k-anonymous if it
induces a partition {V1, . . . , Vl} of H such that:

1. |Vs| ≥ k for all 1 ≤ s ≤ l; and

2. For every 1 ≤ s ≤ l, for all Pi, Pj ∈ Vs, for every P ′ ∈
H , msg ∈M: P(P ′(msg,Pi), ∗) and P(P ′(msg,Pj), ∗)
are computationally indistinguishable.

That is, each message sent to an honest party has at least k
indistinguishable recipients.

3.3 Robustness
In addition to the anonymity guarantees, we will require

that the communication protocol be robust against an ad-
versary trying to render it useless. We capture this intuition
with the notion of robustness.
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Definition 6. Let α ∈ [0, 1]. A protocol P is α-robust if in
each round, the protocol satisfies at least one of the following
conditions:

Fairness: For all P ′ ∈ H and for all (msg, i) ∈ (M× [n]),
if P ′ has as input (msg, i), the probability (over the
randomness of P ′) that party Pi receives msg is at
least α

Detection: The set S of parties who deviate from P is
non-empty and there is a single Pi ∈ S such that for
all Pj ∈ H , Pj outputs Pi.

That is, for every round, either the protocol was fair, or an
adversarially controlled party was exposed.

4. THE PROTOCOL
Our solution to the k-anonymous message transmission

problem is similar to Chaum’s [4] DC-Nets but features
two important innovations.

First, we partition the n parties into smaller groups of size
M = O(k) such that with high probability k members of
each group are honest. Each group performs essentially the
multiparty sum protocol described in Section 2, where the
input Xi is of the form (msg, g), a pair describing the mes-
sage msg to be transmitted and the group g of the receiver.
This guarantees receiver k-anonymity as well as sender k-
anonymity, because sending to one member of group g is
identical to sending to any other member of g, and there are
always k honest participants in each group.

Second, each group runs 2M copies of the multiparty sum
protocol in parallel, restricting each party to transmit in
at most one parallel copy, so as to provide fairness. We
give a protocol which allows the detection of at least one
non-conforming party in each round where access to this
shared channel was not fair. Since each group has only O(k)
non-conforming parties, an adversary can only cause O(k)
protocol failures in each group, and no protocol failure com-
promises the anonymity of any honest party. In comparison,
previous solutions built around DC-Nets may involve let-
ting a protocol failure go undetected or compromising the
anonymity of a message.

4.1 Description
The protocol will be described in steps for ease of ex-

position. The first, Protocol 3, will not be secure against
non-participation.

4.1.1 Transmission

Protocol 3. k-AMT

Precondition: Assume that the n parties are partitioned
into groups of size M , with each group having at least k
honest participants (in Section 5 we discuss how this precon-
dition is met). Below are the instructions to be performed
by each group individually. For notational simplicity, we de-
note the parties in the current group by P1, . . . , PM , and the
public encryption keys of these parties by PK1, . . . , PKM .
“Broadcast” means to send to every other member of the
group.

Input: Each party Pi in the group has input gi, the group
the receiver belongs to, and msgi, a message. (msgi, gi)
will be interpreted as an element of �q, where q is a large

prime that divides p − 1 (p is also a prime). We identify
(msgi, gi) = (nil, nil), indicating “no message this round,”
with 0 ∈ �q.

1. Commitment Phase:

• Pi chooses l ← [2M ] and sets Xi[l] = (msgi, gi)
and Xi[t] = 0 for t �= l ∈ [2M ]

• Pi splits Xi[t] ∈ �q into M random shares si,1[t],
. . . , si,M [t] for t ∈ [2M ]

• Pi chooses ri,j [t]← �q for all j ∈ [M ], t ∈ [2M ]

• Pi computes commitments Ci,j [t] = Cri,j [t](si,j [t])

• Pi broadcasts {Ci,j [t] : j ∈ [M ], t ∈ [2M ]}

2. Sharing Phase:

• For each j �= i,
Pi −→ Pj : {(ri,j [t], si,j [t]) : t ∈ [2M ]}
• Pj checks that Cri,j [t](si,j [t]) = Ci,j [t]

3. Broadcast (only within the group) Phase:

• Pi computes the values Ri[t] =
�

j rj,i[t] mod q

and Si[t] =
�

j sj,i[t] mod q

• Pi broadcasts {(Ri[t], Si[t]) : t ∈ [2M ]}
• All players check that CRi[t](Si[t]) =

�
j Cj,i[t]

mod p

4. Result:
Each player computes the result as X[t] =

�
i Si[t] mod

q, computes R[t] =
�

i Ri[t] mod q and checks that
CR[t](X[t]) =

�
i,j Ci,j [t] mod p

5. Transmission Phase:
For each X[t] �= 0, each Pi interprets X[t] as a pair
(Msg[t], G[t]) and sends Msg[t] to every member of G[t]

4.1.2 Fairness
Suppose at the conclusion of the transmission phase, at

most M of the 2M values X[t] were non-zero. Then this
execution was fair: each Pi had probability at least 1/2,
over its own choices, of successfully transmitting msgi. On
the other hand, if more than M of the X[t] were non-zero,
then at least one Pi had more than one Xi[t] �= 0. We now
describe an honest verifier statistical zero-knowledge proof
that allows each honest party to prove that they set at most
one Xi[t] to a non-zero value, assuming it is hard to compute
logg(h) (this allows the honest players to identify at least one
party Pi with more than one Xi[t] not equal to zero).

Informally, this protocol uses the well-known “cut-and-
choose” technique: player Pi prepares new commitments
C′

i[t] to the values Xi[t] and randomly permutes them. Then
the verifier may choose either to have Pi open 2M − 1 of
the (permuted) C′

i[t] values to zero, or to have Pi reveal the
permutation and prove (in zero-knowledge) that he can open
the commitments C′

i[t] and Ci[t] (for each t ∈ [2M ]) to the
same value.

Protocol 4. Zero-knowledge proof of fairness
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1. Pi chooses r′[t] ← �q, t ∈ [2M ], and π ← �2M (a
permutation on {1, . . . , 2M}). Define

ρi[t] =
�

j

ri,j [t] ,

Ci[t] =
�

j

Ci,j [t] mod p = Cρi[t](Xi[t]) ,

ρ′
i[t] = ri[t] + r′[t] mod q ,

C′
i[t] = Ci[t]h

r′[t] mod p = Cρ′
i
[t](Xi[t])

Pi −→ V : 〈κ[t] = C′
i[π(t)]〉t=1,... ,2M

2. V −→ Pi : b← {0, 1}
3. If b = 0, then:

• Pi sets l such that Xi[l] �= 0 if l exists, or chooses
l← {1, . . . , 2M} otherwise.
Pi −→ V : 〈ξ[t] = ρ′

i[π(t)]〉π(t) �=l

• V accepts iff hξ[t] = κ[t] mod p for all t �= π−1(l)

Otherwise, Pi proves that C′ is a commitment to a per-
mutation of C by revealing π and proving knowledge of
the discrete log of x[t] = C′

i[t]/Ci[t] = κ[π−1(t)]/Ci[t]:

• Pi picks values σ[t]← �q,

Pi −→ V : π, 〈y[t] = hσ[t] mod p〉t
• V −→ Pi : 〈z[t]← �q〉t
• Pi −→ V : 〈w[t] = r′[t]z[t] + σ[t] mod q〉t
• V accepts if x[t]z[t]y[t] = hw[t], for all t ∈ [2M ]

The above protocol is public-coin, honest-verifier statistical
zero knowledge. In practice, we may implement the verifier
by calls to a cryptographic hash function and obtain security
in the Random Oracle Model [2], or the verifier may be
implemented by the remaining parties through a subprotocol
in which each party non-malleably commits to random bits
and then reveals the bits; the randomness used is then the
exclusive-or of each party’s random string. So long as there
is one honest verifier this approach will work: a party which
refuses to participate in this subprotocol can be recognized
as the cheating party.

4.1.3 Non-participation
Unfortunately, the previous protocol neglects the ability

of an adversary to refuse to transmit data altogether. In
fact, this has typically been the hardest of all scenarios to
cope with. In such a situation, it is impossible to arbitrate
correctly as to whether the required sender did not send a
message, or the alleged receiver is lying about not receiving
the message. An augmentation is required to Protocol 3 in
order to deal with this situation:

Protocol 5. k-AMT2

2. New Sharing Phase:

• For each j �= i,
Pi −→ Pj : {EPKl (ri,l[t], si,l[t]) : l ∈ [M ], t ∈
[2M ]}.
• Pj checks that Cri,j [t](si,j [t]) = Ci,j [t]

After each phase of Protocol 3:

1. Timeout Step: For all Pj failing to receive a required
message from Pi after the timeout period, Pj sends a
signed “timeout” message T{i, j} to every group mem-
ber.

2. Correction Step: For each i′ �= j, l, j′ ∈ [M ], t ∈
[2M ]:

• if the Commitment phase has begun,
Pi′ −→ Pj : {Cl,j′ [t]}
• if the Sharing phase has begun,

Pi′ −→ Pj : {EPKj (rl,j [t], sl,j [t])}
• if the Broadcast phase has begun,

Pi′ −→ Pj : {(Rl[t], Sl[t])}
• Finally,

Pi′ −→ Pj : {T{a, b} : (Pa → Pi : T{a, b}) }

Here, EK(m) denotes the public-key encryption of m with
public key K, where E is a semantically-secure public key
encryption scheme. Under this augmentation, the message
and round complexity of the protocol increase by a factor of
at most 2, and the bit complexity increases by a factor of M .
For space considerations, we omit the full description and
analysis of two alternative schemes which avoid this factor of
M increase in bit complexity. The first reduces bit complex-
ity by modifying the Correction Step to the Commitment
Phase (the first bullet of step 2 above). Rather than having
each honest participant send all M commitment matrices to
every other participant, each honest participant sends only
a randomly chosen subset of size loge M . The robustness
of the protocol is then decreased by an additive factor of
1/M . The second scheme works by tracking which pairs of
participants are unwilling to communicate and constructing
broadcast trees which avoid these links at the expense of
extra rounds; the key observation is that, when some par-
ticipant is no longer connected to some complete subgraph
of size k he can be dropped from the network, so that an
adversary cannot arbitrarily increase the round complexity.

4.2 Analysis

4.2.1 Robustness
Let us now consider the success of all possible attacks

against the robustness of the protocol. Note that whenever
an investigation is warranted (any check fails), a simple sub-
protocol is executed wherein every player reliably broadcasts
every received broadcast from the other players. If a party is
found to have sent different signed broadcasts, it is identified
as the cheater. If not, the investigation continues.

The simplest possible deviation is for an adversary to at-
tempt to jam the channel by transmitting in more than one
slot. However, if access to the channel was not fair, then
this is detected with high probability. Since we have already
verified that all broadcasts were made correctly, then each
party has the same commitment matrix (the first broad-
cast) for every other player. Therefore, the zero-knowledge
subprotocol will detect the cheater with negligible chance of
failure.

Theorem 1. Protocol 4 is sound: if for some i, there
exist t �= t′ such that Xi[t] �= 0 and Xi[t

′] �= 0 then
|Pr[V accepts]− 1

2
| is negligible.
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Proof. (Sketch) Suppose V chooses b = 0; then, if the
commitments C′

i are formed correctly Pi must compute logg h

(mod p) in order to open one of C′
i[t], C

′
i[t

′] to zero. If
computing discrete logarithms modulo p is hard, then this
happens with negligible probability. Likewise, if V chooses
b = 1, then if the commitments C′

i are malformed, Pi must
compute logh g in order to make V accept (by the soundness
of the discrete logarithm subprotocol in step 3). So for the
honest V , regardless of the formation of the commitments
C′

i, Pi has probability at most 1/2 plus a negligible factor
of convincing V to accept.

Theorem 2. Protocol 4 is honest-verifier zero-knowledge.

Proof. (Sketch) We exhibit a simulator for the honest-
verifier case: flip a coin representing the bit b in step 2. If
b = 0, form the commitments C′

i[t] = Cr′[t](0) from step 1,
choose a random l ∈ 1, . . . , 2M and reveal r′[1], . . . , r′[l −
1], r′[l +1], . . . , r′[2M ] in step 3. If b = 1, form the commit-
ments C′

i[t] in the same manner as the honest prover, and
use the honest-verifier simulator for the discrete logarithm
protocol in step 3.

Given that incorrect broadcasts will always be detected,
and non-participation is dealt with, the only other possi-
ble deviation is to send incorrect data. However, because
of the use of commitments, every piece of data is either a
commitment that will have to be opened, or the opening of
an already transmitted commitment (or commitment prod-
uct). Therefore, this deviation will be detected as long as
breaking the commitment scheme is hard.

4.2.2 Anonymity

Theorem 3. If group G has at least k honest parties,
then Protocol 3 is sender k-anonymous for group G.

Proof. (Sketch) In each parallel round, the multiparty
sum protocol guarantees that no adversary may determine
the inputs of any honest parties; thus the adversary may
not distinguish between the case that Xi[t] = 0 and Xi[t] =
Msg[t] for any honest party.

Theorem 4. If every group G has at least k honest par-
ties, then Protocol 3 is receiver k-anonymous.

Proof. (Sketch) Each message sent to an honest party
Pi is received by all parties in Pi’s group; since there are at
least k honest parties in this group, the adversary cannot
distinguish between these parties as the recipients.

Theorem 5. If the precondition for Protocol 3 holds, Pro-
tocol 4 and Protocol 5 together give a 1

2
-robust k-anonymous

transmission protocol.

4.2.3 Efficiency
Because we detect cheaters with high probability, we may

consider the typical case to be when all participants fol-
low the protocol exactly except for non-participation. In
this case the round complexity is 4, plus at most 3 correc-
tion steps. In terms of message complexity, we transmit
O(M2) = O(k2) messages for every anonymous message
sent. The bit complexity per anonymous bit sent is O(k4)
in the worst case. Because k is unrelated to n, the number
of participants, this protocol scales very well.

In the case where O(k) parties send anonymous messages
per round, the Transmission Phase of Protocol 3 still trans-
mits O(k2) protocol messages for every anonymous message
sent. However, there are alternate strategies that allow
amortizing message complexity over the anonymous mes-
sages of the group.

One alternative is to replace this transmission phase by
another in which, for each t such that X[t] �= 0, each Pi

randomly chooses � c
1−β

 members of G[t] and sends Msg[t]

to those parties. In this case, when O(k) parties transmit
anonymously the ratio of protocol messages to anonymous
messages is O(k), and the ratio of protocol bits to anony-
mous bits is O(k3). However, all of the honest parties of the
sending group fail to send to the intended recipient of Msg[t]

with probability e−c/2. This condition is undetectable by
the anonymous sender, thus requiring forward erasure cor-
rection over message blocks.

Another alternative trades round complexity for message
complexity in the “best case”: After each Pi in the sending
group computes X[t], Pi sends Msg[t] to the ith member
Qi of G[t]. Each Qi then sends Pi a signature on Msg[t].
Finally each Pi collects all such signatures and broadcasts
these signatures to the other members of his group. In this
alternative, the round complexity increases by 2, but again
when O(k) anonymous messages are transmitted the ratio of
protocol messages to anonymous messages is O(k) and the
ratio of protocol bits to anonymous bits is O(k3); and any
member of the sending group who fails to forward anony-
mous messages is caught. However, this alternative is not
secure against non-participation.

We intend for our protocol to be used over the Internet
or networks of similar characteristics. Our protocol is par-
ticularly efficient in such networks, since throughput is fre-
quently constrained by network latency, and our protocol
has low round complexity.

Notice also that the zero-knowledge subprotocol is very
efficient: with security parameter λ (the number of parallel
repetitions of Protocol 4), the number of rounds is constant,
the total number of bits transmitted is O(kλ lg p), and a non-
conforming party is caught with probability at least 1−2−λ.
However, even if it were less efficient, since it need only be
executed when cheating takes place, and all cheaters can
be caught with high probability, the cost of detection when
amortized over many rounds is essentially zero.

5. NETWORK CONSTRUCTION
The protocols in the previous section work for any network

which has already been partitioned into groups. Here we
present several strategies related to the efficient, scalable
construction and management of this group structure.

5.1 Group Size
We set the group size to M = 2k

1−β
(recall that β is the

fraction of participants that the adversary can control) so
that when the groups are chosen at random, with high prob-
ability at least k members of every group are honest: a mul-
tiplicative Chernoff Bound tells us that for any group G,

Pr[|H ∩G| < k] ≤ e−k/4 ,

so the probability that any group does not maintain k-
anonymity decreases exponentially with k. For small k this
probability can be computed directly for a tighter bound.
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5.2 Group Formation and Management
We propose that a simple protocol be used to construct

the groups. The formation of groups should be such that
parties cannot choose which group they belong to. In an ini-
tialization phase, interested parties may securely construct
the list 〈P1, . . . , Pn〉 either through a small group of trusted
registration servers or through a secure group membership
protocol such as that of [15]. The parties then choose a
session identity S, for example, using a cryptographic hash
function H applied to the initial parameters of the network.
The number of groups is determined as the largest power
of 2 smaller than n(1 − β)/k, say 2m. Then each Pi de-
termines their group number by the m least significant bits
of H(S||Pi); thus any party, given the list of participants,
can determine the group of any other party, and the other
participants in his own group.

5.3 Optimizations and Concerns

5.3.1 Minimizing Turnover
If a significant number of honest parties leave the net-

work (even temporarily) then the k-anonymity property may
sometimes be violated. A possible approach to minimize
this risk is by charging a high computational cost to rejoin
a group, using a protocol such as Dwork and Naor’s moder-
ately hard functions [8] or Back’s Hashcash [1].

5.3.2 Rate Adjustment
Notice that a significant barrier to the implementation of

a fully anonymous protocol such as DC-Nets is the need
to fully synchronize n hosts when n is large. In the pro-
tocol proposed here, there is no such requirement — the
groups may operate asynchronously of one another. Be-
cause of that, each individual group may optimize its time
between rounds to approximate the average sending rate of
the group. This can be accomplished automatically using
the fact that the outcome of the protocol gives a good esti-
mate of the number of parties transmitting each round; so if
no parties transmit, an additive increase in the intra-round
gap may be used, and if many parties transmit, a multiplica-
tive decrease may be used, as in other fair communications
protocols.

6. CONCLUSIONS
We have introduced the notion of k-anonymous message

transmission by analogy to the concept of k-anonymity from
the privacy literature. Using this notion we are able to give
simple and efficient protocols for anonymous message trans-
mission which have provable security against a very strong
adversary. We believe an interesting avenue for further re-
search is to investigate whether other multiparty computa-
tion tasks can also be simplified using a similar approach,
i.e. by weakening the security goals in a manner which is
still sufficient for many applications. We also believe an im-
portant future step is the implementation of our protocol in
order to determine the actual overhead introduced and the
achievable throughput.
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APPENDIX

A. PROTOCOL 2 DOES NOT NEED RELI-
ABLE BROADCAST

One technical point is not addressed in our presentation:
since we avoid the use of reliable broadcast, is it possible
for an adversary to disrupt the protocol by sending different
messages to different parties in place of broadcasts? It is in-
tuitively clear that the commitments used in the multiparty
sum protocol (Protocol 2 ) prevent this situation as long as
all parties participate; but since we are not aware of a pub-
lished proof to this effect, we outline one here. The idea
of the proof is conceptually simple: first we show that no
single adversarial party may force an inconsistent outcome,
and then we show that any set of k adversarially controlled
parties can be successfully simulated by a single party. The
result follows.

Lemma 1. For any n, if discrete logarithms in �
∗
p are

hard, no single party may cause two honest parties to com-
pute different outputs in Protocol 2 .

Proof. There are only two opportunities for the adver-
sary (without loss of generality, P1) to cheat via the lack
of reliable broadcast: he may send (at least) two different
commitment vectors {C1,j : j ∈ [n]} in step 1, or he may
send two different sum values (R1, S1) in step 3. Note first,
that if any attempt at step 1 will be caught, then the ad-
versary is constrained by the commitment protocol in step
3. Thus it remains to prove that any attempt to send two
distinct commitment vectors {C∗

1,j}, {C†
1,j} is subsequently

caught. To see that this is true, notice that there must be
some j, such that C∗

1,j �= C†
1,j . Without loss of generality,

suppose j = 2. Furthermore, at least one party must receive
C∗, and at least one must receive C†, without loss of gen-
erality, suppose these parties are P2 and P3, respectively.
Now, suppose that P1 incorrectly opens C∗

1,2 to P2; obvi-
ously this is caught by P2 in step 2. Otherwise, suppose P1

correctly opens C∗
1,2 to P2; then when P3 receives the value

(R2, S2) = (r∗1,2 +
�

j≥2 rj,2, s
∗
1,2 +
�

j≥2 sj,2) from P2, and

checks if gS2hR2 = C†
1,2

�
j≥2 Cj,2, this check will fail since

C∗
1,2 �= C†

1,2, by assumption.

Lemma 2. Any group of k (out of n) adversaries who
cause two honest parties to compute different outputs in Pro-

tocol 2 with significant probability may be simulated by a sin-
gle adversarial party (out of n−k+1) with the same success
probability.

Proof. Without loss of generality, denote the k adver-
sarially controlled parties of the hypothesis by Pn−k+1, . . . ,
Pn, and let � = n−k. We will show how a single adversarial
party Q may simulate the interaction between the honest
parties P1, . . . , P� and the adversarial parties. First, with-
out loss of generality, assume the parties P�+1, . . . , Pn to
be delaying adversaries: that is, all adversarially controlled
parties wait until every honest party has spoken in each
round. (If they do not wait, they can be rewritten to do
so without decreasing their success probability) Then Q can
simulate the honest parties to P�, . . . , Pn as follows:

1. Commitment Phase: When Pi sends Q the com-
mitment Ci,�+1, Q computes a random sharing of this
commitment:

• Q chooses k random shares s′i,�+1, . . . , s′i,n subject
to
�

j s′i,�+j = 0.

• Q chooses k random values r′i,�+j ∈ �q.

• Q computes C′
i,�+1 = Ci,�+1h

s′i,1gr′
i,�+1 , and C′

i,�+j

= gs′i,�+jhr′
i,�+j for 2 ≤ j ≤ k.

• Q sends {Ci,j : j ≤ �}, {C′
i,j : � < j ≤ n} to each

adversarially controlled party.

2. Sharing Phase: when Pi sends Q the values ri,�+1,
si,�+1, Q sends (ri,�+1 + r′i,�+1, si,�+1 + s′i,�+1) to P�+1,
and (r′i,�+j, s

′
i,�+j) to P�+j , for 2 ≤ j ≤ k.

3. Broadcast Phase: When Pi sends (Ri, Si) to Q, Q
sends (Ri, Si) to each P�+j .

Notice that by following this procedure, Q perfectly sim-
ulates the honest parties to the adversarial parties. In the
opposite direction, Q emulates P�+1, . . . , Pn to the honest
parties as follows:

1. Commitment Phase: If each P�+i sends the commit-
ment vector {Cj

�+i,l} to Pj , then Q sends the commit-

ment vector {�i Cj
�+i,l} to Pj .

2. Sharing Phase: If each P�+i sends the value (r�+i,j,
s�+i,j) to Pj , then Q sends the value (

�
i r�+i,j ,

�
i s�i,j)

to Pj .

3. Broadcast Phase: If each P�+i sends the value (Rj
i , S

j
i )

to Pj , then Q sends (
�

i Rj
i ,
�

i Sj
i ) to Pj .

If the messages sent by P�+1, . . . , Pn all pass all of the checks
in Protocol 2, then so do the messages sent by Q. Thus Q
forces an inconsistent outcome with the same probability as
P�+1, . . . , Pn, as claimed.

Theorem 6. If discrete logarithms in �
∗
p are hard, no

adversary may cause two honest parties to compute different
outputs in Protocol 2 .

Proof. The theorem follows by the conjunction of lemma
1 and lemma 2: since any k adversarial parties can force an
inconsistent outcome with the same probability as some in-
dividual party, and no individual party may force an incon-
sistent outcome if discrete logarithms in �

∗
p are hard, then

if discrete logarithms in �
∗
p are hard, no adversary (con-

trolling any number of parties) may force an inconsistent
outcome.
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