
On Blending Attacks For Mixes with Memory
Extended Version

Luke O’Connor ∗

Abstract

Blending attacks are a general class of traffic-based attacks, exemplified by the
(n − 1)-attack. Adding memory or pools to mixes mitigates against such attacks,
however there are few known quantitative results concerning the effect of pools on
blending attacks. In this paper we give a precise analysis of the number of rounds
required to perform a blending attack for the pool mix, timed pool mix, timed
dynamic pool mix and the binomial mix.

1 Introduction

Mixes, first proposed by Chaum [3], are a means of providing unlinkability between a set
of messages received and subsequently forwarded by the mix. This is typically achieved
through a combination of cryptographic techniques and traffic manipulation such as de-
laying, padding and re-ordering. The original proposal of Chaum, referred to as a thresh-
old mix, has been extended and improved by many authors (see [12, 11, 7] for surveys).
Anonymous remailer systems such as Mixmaster [10], and its successor Mixminion [4],
are embodiments of (and improvements to) the principles originally presented by Chaum.
Anonymity systems are subject to a wide variety of threats including attacks pertaining
to replay, blending, pseudospoofing, tagging, intersection and timing [4]. The threat that
such attacks pose against a given anonymity system will depend on the system design
and its operational characteristics, as well as the control that an attacker can can exert
on the mix or its environment to mount the attack.

In this paper we will be mainly concerned with blending attacks, which refer to a gen-
eral class of attacks based on manipulating network traffic to compromise the anonymity
of one or several messages sent to a mix [12]. The attacker is assumed to be a global

∗This work was completed in February 2005 while the author was at IBM Zurich Research Laboratory,
Switzerland. He can now be contacted via email at luke.oconnor@swissonline.ch.

1

active attacker, who is able to monitor all communication links, delete and delay legiti-
mate message traffic, and insert arbitrary amounts of spurious traffic. The best known
blending attack is the (n − 1)-attack, where the traffic to a mix is manipulated so that
it contains a message batch of size n that consists of a target message m∗ and n − 1
spurious messages generated by the attacker. When the mix is a standard threshold mix,
the target message is guaranteed to be included in the next set of flushed messages, and
can therefore be isolated and traced by the attacker. For standard threshold mixes, the
(n− 1)-attack requires just two rounds: one round to wait for the current mix contents
to be flushed, and then one additional round to flush the target message while blocking
other legitimate message traffic. The (n − 1)-attack can always be attempted given a
sufficiently powerful attacker, and the authors of [2] remark that there is “no general
applicable method to prevent this attack”.

A general strategy that mitigates against blending attacks is to introduce memory
into a mix, referred to as the pool. A pool permits messages to be retained in the mix for
several rounds before being forwarded, which increases the message delay but also mixes
messages within larger message sets. With respect to the (n − 1)-attack, the attacker
must then first replace the current pool of legitimate messages in the mix with spurious
messages, then submit the target message, and finally keep submitting more spurious
messages until the target message is flushed. Therefore when a mix is equipped with
a pool, the attacker will be required to control the mix for more rounds to arrange the
circumstances for a successful (n− 1)-attack as compared to a threshold mix.

If a mix designer is to validate their choice a system parameters (such as the batch size,
pool size, or timing threshold) then a thorough understanding of the trade-off between
these parameters and their influence on the success of blending attacks is required. For
example, the timed dynamic pool mix is used in the recent design of the Mixminion
remailer [4], and while the authors state that their batching strategy will force an attacker
to spend multiple time intervals to complete an (n − 1)-attack, no specific analysis is
presented. The main reference on analysing blending attacks is [12], later revised and
extended in [11]. While many cogent remarks concerning mix designs are made in [12, 11],
accurate expressions for the number of rounds required to complete the (n − 1)-attack
on the basic threshold pool mix and the timed dynamic pool mix are not given.

Our main result is to derive the probability distribution for the number of rounds
required to complete an (n − 1)-attack against several types of mixes with memory. In
particular we consider the pool mix, the timed pool mix, the timed dynamic pool mix
and the binomial mix [12, 8]. Our analysis is based on a steady-state strategy where the
attacker keeps the number of messages entering and leaving the mix constant over the
rounds of the attack, which is true of the pool mix by design.

An outline of this paper can be given as follows. In §2 we introduce basic concepts and
notations for mixes with memory, used throughout the paper. In §3 we give an overview
of blending attacks, and then elaborate on the steady-state strategy for blending attacks

2

in §3.1. The basic threshold pool mix is analyzed in §4, and that analysis is then extended
to the timed pool mix in §5, and the timed dynamic pool mix in §6. Finally, the binomial
mix is discussed in §7, and our conclusions are presented in §8.

2 Mixes with Memory

As with memoryless mixes, mixes with memory operate over a series of rounds. At the
beginning of round r ≥ 1, the mix contains a message pool Pr of size |Pr|, that consists
of the messages retained in the mix from round r − 1. It is assumed that P1 consists of
dummy messages generated by the pool mix itself, denoted by the set B0. The set of
messages collected by the mix over the course of round r will be denoted by Br, referred
to as r-th batch set. Round r is terminated when the batching condition is satisfied.
Let Sr = (Pr ∪ Br) denote the set of messages resident in the mix when the batching
condition is satisfied, referred to as the selection set. The mix then selects a subset Fr of
messages from Sr to be flushed (forwarded), according to a flushing rule, referred to as
the flush set Fr. Each message m ∈ Fr is flushed, and the pool for the next round is then
defined as Pr+1 = (Sr − Fr). The batching condition and flushing rule are collectively
referred to as the batching strategy for the mix.

Mixes with memory can be parameterized to support a large variety of batching
strategies (see [12, 11, 7] for extensive surveys). A basic design principle is whether the
batching condition is threshold-based, time-based, or potentially a combination of both.
The batching condition of a threshold mix is satisfied when |Br| = n, and n is referred
to as the threshold parameter. For threshold mixes the round structure is then defined
as intervals over which the mix receives n messages. On the other hand, the flushing
condition of time-based mixes is satisifed every t time units, where t is called the mixing
interval. In this case the round structure is defined as the series of mixing intervals of
length t. Another basic design distinction is whether the pool size is static or dynamic.
For mixes with static pools, |Pr| = N for all r ≥ 0, while for dynamic pools, |Pr| is a
function of |Sr−1|, the number of messages in the mix at time r−1. These two properties
can be combined to produce different variants on mixes mixes with memory including
the pool mix, the timed pool mix, the threshold or timed pool mix, and so on. We also
assume that in practice each mix has two additional integer parameters, Nmin and Nmax,
which handle boundary cases. When |Br| < Nmin the mix retains the current batch in
the pool but does not flush any messages. On the other hand, when the mix receives a
large number of messages it restricts the size of the batch to be less than Nmax to avoid
overflow conditions.

3

3 Blending Attacks

Blending attacks refer to a class of attacks where an attacker is able to manipulate the
messages entering the mix, typically through through a combination of trickling and
flooding operations [12]. The (n − 1)-attack can be generalized to mixes with memory,
and consists of two phases: pool flushing and target flushing. The object of pool flushing
is to replace the current pool set Pr by spurious messages generated by the attacker.
Once Pr has been flushed, the attacker can submit the target message m∗, and then
submit additional spurious messages until the target message is flushed.

We note that the attacker can verify when the pool flushing is complete if they
have knowledge of the internal parameters of the mix. For example, assume that the
attacker knows the size N of the pool in a threshold pool mix. The attacker can then
block legitimate traffic and submit batches of spurious messages until the number of the
observed difference between the number of messages sent to, and flushed by, the mix is
N .

For a typical parameter selection, the number of rounds required to complete the
attack is dominated by the pool flushing, since flushing the target message from the mix
can be viewed as special case of flushing a pool set of size 1. Our analysis therefore
concentrates on the number of rounds required to flush a general pool size of N ≥ 1.

3.1 The Steady-State Strategy

Various strategies could be pursued by an attacker to flush the current pool from the
mix. Our analysis will be with respect to a particular strategy that we will refer to as the
steady-state strategy 1. In this strategy the attacker observes and/or manipulates a mix
for some number of rounds, say up to and including round r − 1, where |Fr−1| messages
were flushed from the mix. Assume that the attacker wishes to flush Pr from the mix.
The attacker then blocks all legitimate message traffic to the mix and submits k batches
Br, Br+1, . . . , Br+k−1 of size |Fr−1| to the mix, which forces |Fr+j| = |Fr−1| for 0 ≤ j < k.
The batching rule is satisfied at each of these rounds (as it was at round r − 1) and the
mix will either flush immediately or when the next time interval completes.

Let ∆(Pr) be the random variable which describes the minimum number of rounds
required to flush the pool set Pr, assuming that the mix is in a steady-state during these
rounds. If ∆(Pr) = k, for some k ≥ 1, then Pr ∩ Pr+k = {∅}, and Pr ∩ Pr+j 6= {∅} for
1 ≤ j < k, In other words, at least one message mi ∈ Pr was retained in the mix until
the beginning of round r + k − 1, but all such remaining messages are then included in
the set of flushed messages Fr+k−1 for that round.

1The steady-state strategy was described in [12], and we introduce the term here only as a convenient
shorthand.

4

We will determine Pr(∆(Pr) > k) for k ≥ 1, where the probabilities are defined by
choices of the flush set Fr at each round. Thus when Pr(∆(Pr) > k) < ε, for some
suitably small ε, the attacker has the assurance that Pr was flushed from the mix in k
rounds or less with probability 1 − ε. If Pr(∆(Pr) = k) is desired, then for k > 1 this
probability can be determined via

Pr(∆(Pr) = k) = Pr(∆(Pr) > (k − 1))− Pr(∆(Pr) > k). (1)

Equation (1) cannot be use to determine Pr(∆(Pr) = 1), but this probability can typically
be calculated directly from the context of the attack.

4 The Threshold Pool Mix

The threshold pool mix is defined by two parameters: the threshold n, and the pool size
N . Each round r is defined by collecting a message batch Br of size n such that the
contents of the mix are then Sr = (Br ∪Pr). The flush set Fr is then selected as random
subset of Sr of size n. The messages of Fr are forwarded and the pool for round r + 1
is set to Pr = (Sr − Fr). The values of n and N are static over all rounds, so that for
r ≥ 0, |Br| = |Fr| = n, |Sr| = N + n, |Pr| = N . In the remainder of this section we will
use the term ‘mix’ to mean a threshold pool mix.

Following the discussion of §3.1, the threshold pool mix is in a steady-state by defini-
tion since the threshold and pool size are fixed. We now consider the number of rounds
∆(Pr) required to flush the pool Pr. The probability of flushing Pr in a single round is

Pr(∆(Pr) = 1) =

(
n

n−N

)

(
N + n

n

) . (2)

For k > 1, we will calculate Pr(∆(Pr) > k) by decomposing this probability into events
concerning the individual messages from Pr. If we let Pr = {m1,m2, . . . , mN }, then for
1 ≤ i ≤ N , let Ai,k denote the event that mi ∈ Pr+k, meaning that mi was not flushed
from the mix after k consecutive rounds. We will write Ai,1 as Ai, which is the event
that mi is not flushed after one round. By definition

Pr(∆(Pr) > k) = Pr

(
N⋃

j=1

Ai,k

)
(3)

and the union operation of the RHS of (3) may be expanded using the inclusion-exclusion
principle (IEP) [9]. To apply the IEP, various intersections (joint events) between the
Ai,k events must be computed. Conveniently the intersections of these events exhibit
considerable symmetry when the mix is in a steady-state.

5

Theorem 4.1 For N, n, k ≥ 1,

Pr(∆(Pr) > k) =

(
N + n

n

)−k

·
N∑

j=1

(
N

j

)(
N + n− j

n

)k

(−1)j+1. (4)

Proof. We first note that A1A2 · · ·Aj is the event that at least the j messages m1, m2, . . . ,mj

are retained in the mix. The probability of this event is then

Pr (A1A2 · · ·Aj) =

(
N + n− j

n

)

(
N + n

n

) (5)

which only depends on j, and thus Pr(A1A2 · · ·Aj) = Pr(Ai1Ai2 · · ·Aij) for all choices
1 ≤ i1 < i2 < · · · < ij ≤ N . Since the flush set is chosen uniformly and independently at
each round, it follows that

Pr(Ai1,kAi2,k · · ·Aij ,k) = (Pr(A1A2 · · ·Aj))
k . (6)

Now consider the following derivation of Pr(∆(Pr) > k)

Pr(∆(Pr) > k) = Pr

(
N⋃

j=1

Ai,k

)
(7)

=
N∑

j=1

∑
1≤i1<···<ij≤N

Pr
(
Ai1,kAi2,k · · ·Aij ,k

) · (−1)j+1 (8)

=
N∑

j=1

(
N

j

)
· (Pr (A1A2 · · ·Aj))

k · (−1)j+1. (9)

Equation (8) is simply the IEP expansion of (7), and (9) is derived by simplifying (8)
using (6). Finally, the theorem follows from substituting (5) into (9). ¤

Let Sj be the sum of the first j terms of the RHS of (4), for 1 ≤ j ≤ N . The Bon-
ferroni inequalities [9] state that for 1 ≤ j < N ,

Sj+1 ≤ Pr(∆(Pr) > k) ≤ Sj. (10)

Setting j = 1 yields that S2 ≤ Pr(∆(Pr) > k) ≤ S1 where

S1 = N ·
(

N

N + n

)k

. (11)

6

S2 = S1 −
(

N

2

)
·
(

N(N − 1)

(N + n)(N + n− 1)

)k

,

= S1

(
1−

(
N − 1

2

)
·
(

N − 1

N + n− 1

)k
)

. (12)

Here S1 = N ·(Pr(A1))
k is well-known as Boole’s inequality, and is often referred to as the

union bound. We see that S1 is a good approximation to Pr(∆(Pr) > k) as k increases,
since the inner term of (12) is tending to 1 as a function of k.

Table 1 shows Theorem 4.1 evaluated for several choices of n and N . For example,
when n = 160, N = 100 then with probability better than a half, more than 5 rounds
will be required to flush the pool; but the probability that more 15 rounds are required is
0.596× 10−4. The values given in Table 1 were computed using Maple [1], and required
about 20 seconds of computation time on a moderately fast laptop. Computing that
Pr(∆(Pr) > 30) = 0.217× 10−7 for n = 1000 and N = 800 was also quickly determined.
Thus a mix designer can easily evaluate the effect of various choices of n and N against
the the number of rounds to flush a given pool Pr.

n N k, Pr(∆(Pr) > k)
100 80 (3, 0.999) (5, 0.761) (10, 0.238× 10−1) (15, 0.417× 10−3) (15, 0.723× 10−5)
100 160 (5, 0.999) (10, 0.719) (20, 0.966× 10−2) (30, 0.755× 10−4) (40, 0.588× 10−6)
160 100 (3, 0.999) (5, 0.575) (10, 0.706× 10−2) (15, 0.596× 10−4) (20, 0.501× 10−6)
200 160 (5, 0.943) (10, 0.047) (15, 0.834× 10−3) (20, 0.145× 10−4) (25, 0.250× 10−6)

Table 1: Example bounds on Pr(∆(Pr) > k) derived from Theorem 4.1.

We recall that the (n−1)-attack has two phases: flushing the current pool Pr, followed
by submitting and flushing the target message m∗. For a mix with given parameters n′

and N ′, we simply apply Theorem 4.1 with N = 1, and n = n′+N ′− 1 to determine the
number of rounds required to flush m∗.

Example 4.1 Consider a threshold pool mix with threshold n = 160 and a pool size N =
100. If an attacker undertakes steady-state strategy to flush the pool Pr at some round r,
then from Table 1 this will require less than 15 rounds with probability 1− 0.596× 10−4,
and less than 20 rounds with probability 1− 0.501× 10−6. If the attacker knows the value
of N then they can verify the success of the pool flushing by submitting spurious batches
until the difference between the number of message submitted and the flushed is N . There
is less than 1 chance in a million that this phase will require more than 20 rounds. Once
the pool has been flushed the attacker then submits the target message m∗, along with
another batch of n − 1 spurious messages. The number of rounds required to flush the

7

target message is given by Theorem 4.1 after setting N = 1 and n = 160+100−1, which
corresponds to flushing a pool of size 1. Again the success of this phase can be verified by
the attacker. Evaluating Theorem 4.1 with these parameters shows that 3 or less rounds
are required to flush the target message with probability 1−0.531×10−7. Thus the attack
can be undertaken is 23 rounds or less with high probability. ¤

Undertaking an attack for 23 rounds may seem unrealistic, however since the mix is
threshold-based, the attacker is able to flush the mix at will by submitting batches of
size n. Such a lengthy attack would be more difficult to mount on a timed pool mix.

4.1 Estimating the Pool Size

Theorem 4.1 is derived assuming a knowledge of n and N , which will be true for the
system designer, but may not be the case for the attacker. Of course, n will always be
known since each flush set Fr is of size n, which can be passively observed by the attacker.

NEW. It can be shown that Pr(∆(Pr) > k) is a monotonically increasing function of
N for fixed k, such that for any δ > 0

Pr(∆(Pr) > k | N) ≤ Pr(∆(Pr) > k | N + δ). (13)

So if the attacker does not know the exact value of the current pool, Theorem 4.1 can
always upper bound Pr(∆(Pr) > k) by overestimating N .

However, the attacker can obtain very good estimates of N by ‘sampling’ the be-
haviour of the mix. The probability that a given message m ∈ Sr is included in Fr at
round r is easily shown to be p = n/(N + n). Since n is known, the attacker can ap-
proximate the pool size given a sufficiently accurate estimator p̂ for p. Assume that the
attacker submits one (distinguished) message mi to the mix for s rounds, 1 ≤ i ≤ s. Let
Xi = 1 if mi was flushed at round i, and let Xi = 0 otherwise. Then p̂ = (

∑s
i=1 Xi)/s is

a normally distributed estimator of p.

Example 4.2 Let n = 160 and let N = 100. We have used Maple to generate 500
random bernoulli samples with parameter p = 160/(100 + 160) = 0.6154, of which 318
were successes, yielding that p̂ = 318/500 = 0.636. This corresponds to an attacker
submitting 500 messages to the mix in 500 different rounds, and observing that a message
was flushed at the same round it was received with probability 0.636. Using the normal
distribution, the true value of p lies in the interval 0.594 ≤ p ≤ 0.637 with 95% confidence.
Solving for N given that p = n/(N + n) yields that N lies in the range 109.42 ≤ N ≤
91.216 with 95% confidence. Increasing the number of samples to 1000 yields improves
the interval to 106.615 ≤ N ≤ 93.706.

We note that it is relatively simple for the attacker to obtain a large number of samples
from the mix since the attacker can passively obtain the samples. Since the mix is

8

threshold-based, samples can be obtained rapidly in times or high or even moderate
traffic. Further since n and N are fixed parameters, the attacker can take the samples
over a potentially long period and then later mount an (n− 1)-attack using the steady-
state strategy.

5 The Timed Pool Mix

In this variant of the pool mix, batches are defined by fixed mixing intervals of time t,
with a fixed number of messages retained at each round. If the message batch Br collected
during the r-th time period is of size nr, then Pr+1 is selected as a random subset of size
N from Sr = (Pr ∪ Br), and the flush set is defined as Fr = (Sr − Pr+1). If nr = 0
then Pr+1 = Pr and no messages are flushed. For any given round r, this construction
is equivalent to the threshold pool mix with a threshold of n = nr. Example parameters
were given in [6, p.311], where the following rule ensures that N = 20: if nr ≤ 20 then
|Fr| = 0; otherwise |Fr| = (1− 20/nr) · |Sr|.

The steady-state strategy for the attacker is similar to the threshold pool mix, except
that the attacker is able to increase the batch size in an effort to reduce the number
of required flushing rounds. In practice the attacker cannot increase the batch size
arbitrarily and the mix will have an internal limit Nmax on the number of messages that
the mix can hold. In any case, Nmax may still be large enough relative to N so that the
current pool can be flushed quickly. Since the pool size N is fixed, we then assume that
Nmax can be written as Nmax = N + nmax where nmax is the maximum batch size. We
now outline a design strategy which mitigates against the attacker attempting to flood
the mix and quickly flush the current pool.

5.1 A Design Strategy

Consider the following strategy for selecting the pool size N . The designer begins by
selecting a maximum batch size nmax that is to be accepted at each round, perhaps based
on expected traffic statistics. Let us assume that the mix is also designed so that with
high probability an attacker blocking all legitimate traffic can be detected in at most k
consecutive intervals with high probability, say 1− ε, for some appropriately small choice
of ε. The system may be designed, for example, using the heartbeat traffic suggested in
[5]. Given, nmax, k and ε the designer can now use Theorem 1 to find a pool size N so
that Pr(∆(Pr) > k) > (1− ε). The analysis assumes that the attacker is submitting nmax

messages per batch in the stead-state strategy. But if the attacker actually submits less
messages, then Pr(∆(Pr) > k) upper bounds the success of flushing the pool.

Example 5.1 As an example, assume that the designer decides that the mix should
accept no more than nmax = 500 messages per interval, and that the system can (should!)

9

confidently detect steady-state attacks after 3 rounds with probability 1 − 10−4. Then
using Theorem 4.1, selecting a batch of size N = 250, guarantees that for the steady-
state strategy Pr(∆(Pr) > 3) > (1 − 10−4). Further increasing N to 270 ensures that
Pr(∆(Pr) > 3) > (1− 10−5). On the other hand, if the maximum batch size is increased
to nmax = 1200, then Theorem 4.1 yields that Pr(∆(Pr) > 3) > (1−10−4) when N = 450
and Pr(∆(Pr) > 3) > (1− 10−5) when N = 480. ¤

If the mix can accept large batch sizes relative to N , then the attacker may be able to
flush the current pool before the attack is detected by the mix. The approach outlined
above mitigates against this possibility by starting with an upper limit in the batch size
to be accepted, and then deriving a pool size N which defeats the steady-state strategy
for a given number of intervals k with a given probability 1− ε.

The steady-state strategy for the attacker is similar to the pool mix except that the
attacker has more freedom to choose the size n of the batch set (subject to Nmax or an
estimate of this parameter). The exact choice involves a tradeoff between the number
of spurious messages and the number of time intervals to complete the attack, where
in practice the latter consideration would seem to be of more importance. Indeed, the
attacker can minimize the number of messages by keeping the mix in a steady-state
through sending one spurious message per time interval until the pool is flushed (the
attacker can verify when this occurs). Setting n = 1 in Theorem 4.1 and simplfying
yields that

Pr(∆(Pr) > k) =
N∑

j=1

(
N

j

)(
1− j

N + 1

)k

(−1)j+1. (14)

If |Pr| = 100 for example, then evaluating (14) shows that the attacker would require just
over 500 single-message rounds to flush Pr with probability better than 50%. Thus the
attacker is very likely to be detected, since all legitimate traffic must be blocked during
the period of the attack.

If a given threshold is high relative to N , then Pr (or any of its remaining elements)
are likely to be included in the current flush set. The probability that Pr is flushed
after one time period is given in (2), which simplifies to nN̄/(n + N)N̄ where ab̄ =
a(a − 1) · · · (a − b + 1). This probability was erroneously reported in [12, §4.2] to be
N2/(N + n), as expressed in our notation.

- comment on overestimating N ; - hypergeometric distribution population estimation
Alternatively, an attacker

10

6 The Timed Dynamic Pool Mix

The threshold and timed pool mixes considered previously have a pool size that is con-
stant over each round. A dynamic pool mix determines the size of pool |Pr+1| to be
retained for the next round as a function of the number of messages |Sr| currently in the
mix. In this section we consider timed dynamic pool mixes, since these are of practical
interest [10, 4]. Typically a dynamic pool mix is characterized by three parameters:

• The mixing interval t.

• The minimal size of the pool Nmin.

• The fraction α < 1 of the messages to be flushed (subject to Nmin).

At the end of the r-th mixing interval, the mix considers its contents Sr. If |Sr| ≤ Nmin

then |Fr| = 0 and no messages are flushed. Otherwise, let |Fr| = min(|Sr|−Nmin, bα·|Sr|c)
and construct Fr as a random subset of Sr of size |Fr|.
Example 6.1 An example parameterization of α = 0.65, Nmin = 45 was considered in
[7], which defines the following rules for the number of messages to be flushed:

• If 0 < |Sr| ≤ 45 then |Fr| = 0;

• If 46 ≤ |Sr| ≤ 129 then |Fr| = |Sr| − 45;

• If |Sr| ≥ 130 then |Fr| = bα · |Sr| c.
Thus, when the mix contains 130 messages or more the pool size at the next round is
then |Pr+1| = |Sr| − bα · |Sr| c. ¤

6.1 The Steady-State Strategy

We now derive the success of the steady-state strategy, assuming that the objective is
to flush Pr and that the values of N = |Sr−1| and α are known. In the next section
we discuss how the attacker can determine a good estimate of α, and hence |Sr| at any
round. The attacker selects a round r− 1 where the observed traffic has been sufficiently
high to expect that |Fr−1| = bα · |Sr−1|c, or the attacker injects a moderate number of
spurious messages to force this condition with high probability.

Theorem 6.1 If |Fr−1| = bα · |Sr−1|c and |Sr−1 = N |, then for k ≥ 1,

Pr(∆(Pr) > k) =

(
N

bαNc
)−k

·
N−bαNc∑

j=1

(
N − bαNc

j

)(
N − j

bαNc
)k

(−1)j+1.

11

Proof. The proof is a direct adaption of Theorem 4.1 by observing that |Pr| = N −bαNc
and

(Pr(A1A2 · · ·Aj))
k =

(
N − j

bαNc
)k

. (15)

¤
Example 6.2 Let α = 0.6, which is the default value for timed dynamic pool mix of
Mixminion [4], and let there be N = 200 messages in the mix at round r − 1. Then
|Fr−1| = b0.6 · 200c = 120. Given these parameters, Pr(∆(Pr) > k) is calculated in Table
2 for several values of k. ¤

α N k, Pr(∆(Pr) > k)
0.6 200 (3, 0.996) (5, 0.556) (10, 0.835× 10−2) (15, 0.859× 10−4) (20, 0.879× 10−6)

Table 2: Example bounds on Pr(∆(Pr) > k) derived from Theorem 6.1.

As with the time pool mix, the steady-state strategy may not have a sufficient number
of rounds to succeed if the designer incorporates specific measure to detect the blocking
of legitimate traffic.

6.2 Estimating the value of α

The value of α may not be know to the attacker, but a good estimate of α can be
obtained follows. Assume that under normal operation the attacker observes that the
mix at round r flushes |Fr| messages where |Fr| = bαNc where N = |Sr|. If the attacker
blocks legitimate messages during round r + 1, and submits 2 · |Fr| spurious messages
then |Fr+1| = bα(N + bαNc)c. It follows that |Fr+1|/|Fr| is a good approximation to
1 + α since

|Fr+1|
|Fr| ≈ α(N + αN)

αN
= 1 + α. (16)

If we define α∗ as Fr+1|/|Fr| − 1 then N∗ = b|Fr|/α∗c is a good approximation to N . For
example, if α = 0.6 and N = 397, then α∗ = .600840336 and N∗ = 396. The attacker
can now mount a steady-state attack using these estimates.

This (attack) method for estimating α assumes that |Fr| = α · |Sr|, and therefore that
(|Sr| − Nmin) > α · |Sr|. In practice, we expect this condition to be satisfied when the
mix contains as few as several hundred messages. The condition for the example rule
given above with α = 0.65, Nmin = 45 is 130 messages. If the attack is mounted during
a period of low traffic to the mix then the attacker will need to send several hundred
spurious messages to prime the mix for the attack.

12

6.3 Reducing the Pool Size

In the attack outlined above it may be the case that N is very large and it may be
time consuming to keep refilling the mix with bαNc messages to maintain a steady-state.
Since the attacker knows α or can estimate α, the current size of the mix can be closely
approximated from observing a single flush. The attacker can then block all traffic into
the mix and let the mix repeatedly flush, until N has been reduced to an reasonable
value. After k such rounds the size of the mix has been reduced to approximately
N(1− α)k ≈ Ne−kα. We note that if Fr and Fr+1 are two successive flush sets produced
by this process then the ratio α∗ = |Fr+1|/|Fr|.

7 The Binomial Mix

In [8] Dı́az and Serjantov propose a general model for mixes based on classifying flushing
algorithms according the |Fr|/|Sr|, the fraction of messages flushed as compared to the
total number of messages in the mix at round r. Let f : N → [0, 1] denote the flushing
function, such that if f(|Sr|) = p then |Fr|/|Sr|. THE BINOMIAL MIX CAN BE
THOUGHT OF A MULTI-POOL mix

The binomial mix was introduced in [8], and was further elaborated upon in [11, p.77].
The distinguishing property of these mixes is the use of a flushing probability function
f : N→ [0, 1] to determine the set of messages to be flushed. Binomial mixes are timed,
and at the r-th interval f is evaluated to yield f(|Sr|) = pr. Each message m ∈ Sr is
then included in Fr independently with probability pr, and thus |Fr| follows the binomial
distribution with parameter pr.

Potentially many functions could be used as a flushing probability function. In [8]
the suggested function is the normal distribution2

Φµ,σ(s) =
1

σ
√

2π

∫ s

−∞
e−

(t−µ)2

2σ2 dt (17)

so that pr = Φµ,σ(|Sr|) at round r. No values for µ and σ were suggested in [8], but later
in [11, p.80], there is graphical comparison between the Cottrell mix with α = 0.8 and
the binomial mix with µ = 100, σ = 40. 3

2In [8] the authors refer to the normal distribution as the cumulative normal distribution, but the
former term is correct.

3Figure 5.6 [11, p.80] seems to be incorrect since it shows Φ100,40(s) to be converging to 0.8, when in
fact it must be converging to 1.

13

7.1 The Steady-State Strategy

We first derive a bound on the steady-state strategy, assuming that all relevant parame-
ters are known. Consider a steady-state attack at round r such that |Fr−1| was observed
by the attacker, and let Let pr−1 = f(|Sr−1|) and N = |Pr−1|. Adapting Theorem 7 with
Pr(A1A2 · · ·Aj))

k = (1− pr−1)
jk, and letting q = 1− pr−1, yields

Pr(∆(Pr) > k) =
N∑

j=1

(
N

j

)
qjk · (−1)j+1

= −
N∑

j=1

(
N

j

)
(−qk)j

= − (
(1− qk)N − 1

)

= 1− (1− qk)N , (18)

which simply states that Pr(∆(Pr) > k) = 1 − Pr(∆(Pr) ≤ k) when messages are
selected for flushing independently. Also from (1) it follows that Pr(∆(Pr) = k) =
(1− qk)N − (1− qk−1)N for k > 1. Letting k = d log 1

q
N − log 1

q
εe) for some suitably small

ε < 1, consider the following bound

(1− qk)N ≤ exp
{−Nqk

}

≤ exp
{−q−dlog1/q εe}

≤ exp {−ε}
= 1− ε + O(ε2), (19)

where we have used the bounds ln(1 − x) < −x and e−x = 1 − x + O(x2) for x < 1. It
follows from (19) that

Pr(∆(Pr) > k) = ε + O(ε2). (20)

The O(ε2) term can be improved to ε2 · e−ε/2 since

e−ε = 1− ε +
ε2

2

∑
i≥0

(−ε)i/i! = 1− ε +
ε2 · e−ε

2
.

The number of rounds k required for the steady-state strategy to succeed with the error
bound given in (20) is then d log 1

q
(N/ε)e.

14

7.2 The Robustness of Parameter Selection

In [8] it is stated that binomial mixes make blending attacks more probabilistic since the
attacker becomes less certain of the number of messages which are retained in the mix
from one round to the next. This is true, but the success of the steady-state strategy
outlined above is quite robust against possible choices for N and q = 1− pr−1, as we now
argue.

We first note that when N ≥ µ then pr−1 ≥ 1
2
, which for the example parameters

above is satisfied when the mix has 100 messages or more. In this case, q ≤ 1
2

and
k = d log2(N/ε)e steady-state rounds produce an error bound equal to or less than that
of (20). So if the attacker overestimates N with N̂ , such that N̂/N = d then an additional
dlog2 de rounds will be added to achieve the error bound of (20) using N̂ , as compared
to using the actual value of N . Thus overestimating N by a factor of 8 will only add 3
additional rounds to the attack as compared to using the exact value of N .

In this discussion we have assumed that pr−1 ≥ 1
2
, which is true when N = |Sr−1| ≥ µ.

Arranging this condition through flooding does not appear to be too difficult a task for
for the attacker. No general theory for the optimal selection of µ and σ was presented
in [8] or [11, p.77], but based on other mixes, we would expect µ to be less than 1000.
Thus it seems quite feasible for the attacker to create a steady-state where pr−1 ≥ 1

2
.

8 Conclusion

In this paper we have presented a general method for analysing the success of the (n−1)-
attack using the steady-state strategy against a variety of mixes with memory (pools).
This permits a mix designer to analyse parameters choices with respect to their effect
on mitigating against the (n− 1)-attack. Our analysis methods also permits an attacker
to evaluate their success in undertaking a blending attack, assuming relevant parameters
are known or can be estimated.

Our results indicate that the threshold pool mix is particularly susceptible to blending
attacks since it can be rapidly flushed by an attacker, and its pool size can be accurately
estimated if it is not known. The timed pool mix, and its dynamic variant, are more
resistant to blending attacks since the mixing interval limits the speed with which an
blending attack can be mounted. We introduced a design strategy where the designer
can select the pool size and the maximum batch size so that a blending attack is unlikely
to succeed before it is detected. This strategy is not possible for the threshold pool mix
since the attacker can flush the mix at will.

An original designed goal of the binomial mix is to frustrate blending attacks by
reducing the knowledge that the attacker has concerning the size of the pool N that
must be flushed. However we have shown that the exact value of N is not required to

15

complete the attack with high probability. Our analysis cannot be taken further at this
point without a general theory on parameter selection for the binomial mix.

There are several limitations on the analysis that has been presented, which we now
discuss. Throughout the paper the attacker is assumed to be a global active attacker,
who is able to monitor all communication links, delete and delay legitimate message traf-
fic, and insert arbitrary amounts of spurious traffic. Such attackers are very powerful,
designing explicit defenses against such attackers might seem unnecessary, notwithstand-
ing the arguments given in [12] that such attackers are realistic. The analysis of the pool
mixes considered in this paper is simplified by assuming such an attacker, and we may
treat the results as lower bounds on the capabilities of less powerful adversaries. However
it appears that the (n − 1)-attack cannot be mounted (with certainty) by an attacker
who is not globally active.

Another limitation of the analysis presented is the absence of considerations con-
cerning traffic rates, dummy traffic, the length of mixing intervals, and a host of other
practical considerations. For example we have simply assumed that an attacker can block
all traffic to a mix for 20 rounds, which may correspond to an elapsed 10 hour time pe-
riod in practice, and is very likely to be noticed by the mix owner. We stress however
that the results of this paper are mainly aimed at the mix designer, who can then select
parameters to provide security guarantees, both based on practical consideration and the
analysis provided here. Previous to our work, there was no accurate basis for predicting
the success of blending attacks.

References

[1] See the Maple homepage at http://www.maplesoft.com.

[2] Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The disadvantages of free
MIX routes and how to overcome them. In H. Federrath, editor, Proceedings of De-
signing Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity
and Unobservability, pages 30–45. Springer-Verlag, LNCS 2009, July 2000.

[3] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

[4] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
Type III Anonymous Remailer Protocol. In Proceedings of the 2003 IEEE Sympo-
sium on Security and Privacy, May 2003. Additional information on the Mixminion
remailer can be found at http://mixminion.net.

16

[5] George Danezis and Len Sassaman. Heartbeat traffic to counter (n-1) attacks. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2003),
Washington, DC, USA, October 2003.

[6] Claudia Dı́az and Bart Preneel. Reasoning about the anonymity provided by pool
mixes that generate dummy traffic. In Proceedings of 6th Information Hiding Work-
shop (IH 2004), LNCS, Toronto, May 2004.

[7] Claudia Dı́az and Bart Preneel. Taxonomy of mixes and dummy traffic. In Pro-
ceedings of I-NetSec04: 3rd Working Conference on Privacy and Anonymity in Net-
worked and Distributed Systems, Toulouse, France, August 2004.

[8] Claudia Dı́az and Andrei Serjantov. Generalising mixes. In Roger Dingledine, editor,
Proceedings of Privacy Enhancing Technologies workshop (PET 2003). Springer-
Verlag, LNCS 2760, March 2003.

[9] W. Feller. An Introduction to Probability Theory and its Applications. New York:
Wiley, 3rd edition, Volume 1, 1968.

[10] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol
— Version 2. Draft, July 2003.

[11] A. Serjantov. On the anonymity of anonymity systems. Technical Report UCAM-
CL-TR-604, Computer Laboratory, University of Cambridge, 2004. Available at
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-604.html.

[12] Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In Fabien Petitcolas, editor, Proceedings of In-
formation Hiding Workshop (IH 2002). Springer-Verlag, LNCS 2578, October 2002.

17

