
TorScan: Tracing Long-lived Connections and
Differential Scanning Attacks?

Alex Biryukov, Ivan Pustogarov, Ralf-Philipp Weinmann

University of Luxembourg

Abstract. Tor is a widely used anonymity network providing low-latency
communication capabilities. The anonymity provided by Tor heavily re-
lies on the hardness of linking a user’s entry and exit nodes. If an at-
tacker gains access to the topological information about the Tor network
instead of having to consider the network as a fully connected graph, this
anonymity may be reduced. In fact, we have found ways to probe the
connectivity of a Tor relay. We demonstrate how the resulting leakage of
the Tor network topology can be used in attacks which trace back a user
from an exit relay to a small set of potential entry nodes.

1 Introduction

Anonymity clearly was not a concern when the Internet Protocol was designed.
Hence it comes as no surprise that internet communications are traceable. To-
day, the consequences of linking your traffic profile to your persona vary: they
range from ISPs selling your aggregated web browsing history to marketers in
democratic countries to being imprisoned for criticizing the government online in
countries with repressive regimes. For many people, the first approach to hiding
their identity is a public proxy server. This however is no panacea: the owner
of the proxy can be forced to reveal any logs potentially stored – or even worse,
the server may turn out to be a honeypot of the organization the party is trying
to hide from. A better solution is to forward traffic through a chain of network
nodes, so-called relays.

In 1996, Goldschlag, Reed and Syverson [5] presented Onion Routing, a de-
sign limiting traffic analysis on low-latency communication that was inspired by
Chaum’s mix networks [3]. Tor is the refined successor of the original Onion
Routing Project. The Tor network is a low-latency anonymity network which at
the time this of writing comprised of 2500-3000 relays with an estimated number
of daily users (unique IPs) exceeding 400,000. In comparison to single-hop prox-
ies, forwarding TCP streams through multiple relays increases the anonymity of
the users significantly: each hop along the route only knows its successor and
predecessor. Tor tries hard to achieve low traffic latency to provide a good user
experience, thus sacrificing some anonymity for performance. To keep latency
low and network throughput high, Tor relays do not delay incoming messages
and do not use padding.

? The full version of this paper will appear on eprint.iacr.org

2

One way to undermine the anonymity of a Tor user is to reveal the pair of
the corresponding entry and exit nodes; this is supposed to be hard. Once the
correspondence between the entry and exit nodes is known, the anonymity of the
observed connection is reduced to the case of two known sequentially connected
proxies, or to the case of a single proxy if the attacker controls the exit node.
Though this will not allow us to immediately determine the actual originator
of the connection, this is already a significant information leak because triplets
of guard nodes can serve as unique user identifiers within the Tor network, and
also because knowing the entry node tells the attacker where to target next.
Namely, other attacks may be launched to compromise the entry node, or the
entry node’s operator/ISP could be presented with legal demands to reveal the
network logs. Given that the exit node is known, the probability of correctly
guessing the entry node is 1

n , where n is the number of guards in the Tor network.
For an adversary with less visibility than a global passive adversary and a fully
connected network, increasing this probability is far from straightforward. Still
in reality, not all entry and exit nodes are connected via three hop paths (which
is default for Tor) at a given point of time. This observation can become the
basis of several novel attacks on Tor, as will be shown in the paper. The main
contributions of this paper are:

(i) We present two ways to reveal the connectivity of nodes in the Tor network:
one using canonical connections which are a part of the Tor specification; the
other is a more generic technique, namely a timing attack on the connection
establishment between two relays.

(ii) We present novel attacks which are based on the connectivity scanning ap-
proach. The first attack allows to identify the guard node which was used in
a circuit carrying a long-lived connection – such as an SSH session or a large
file download. The second attack, which we have chosen to call differential
scan attack, uses recurrent connections to reveal all guard nodes of a user.

(iii) We give some guidance on countermeasures that can be implemented to
make the Tor network more resilient to leakage of topology information.

The rest of the paper is organized as follows: in the next section, we summarize
aspects of the Tor specification which are relevant for the connectivity scanning
techniques and for the description of our attacks. Thereafter we give a short
overview of previous attacks on Tor. We describe our techniques for revealing
the connectivity of Tor relays in Section 3. In Section 4.1, we describe our attack
on long-lived streams. The differential scan attack is described in Section 4.2.
An analysis of our attacks is performed in Section 5. We discuss the potential
countermeasures in Section 6 and conclude in Section 7.

2 Background

Tor is a popular volunteer-based overlay network used to conceal user’s location
or behavior from adversaries conducting network surveillance or traffic analysis.
Using Tor makes it more difficult to trace Internet activity for TCP applications.

3

To connect to a server through Tor, a client first chooses a path (i.e. a sequence
of Tor relays: guard, middle, and exit) which will then carry data back and
forth between the client and the server. To choose a path, the client obtains
the list of available Tor routers and their parameters from a document called
Network Consensus. Each Tor router in the list is uniquely identified by the SHA-
1 message digest of its RSA public key. To prevent sampled profiling attacks each
user has a fixed triplet of guard nodes which does not change for approximately
one month. Each time the user needs to choose a guard node, he chooses it
uniformly from this triplet.

After the sequence of relays is chosen, the client starts to build a circuit, one
hop at a time. First, the user sets up a TLS connection with the guard node and
uses COMMAND CREATE and COMMAND CREATED cells1 to negotiate a Diffie-Hellman
(DH) key. This creates a one-hop circuit. The client extends the circuit to the
middle node through the guard node: he sends a RELAY COMMAND EXTEND cell
to the guard in which he specifies the address, the digest of the middle router,
and the first step of DH key exchange encrypted by the middle node’s public
key. Once the guard node receives the cell, it establishes a TLS connection with
the middle node and sends it the encrypted portion of the DH handshake. The
middle node decrypts it and replies with the second step of DH exchange which
is forwarded to the client within a RELAY COMMAND EXTENDED cell. In this way
the second hop of the circuit is established.

If during the circuit construction process the middle node rejects the connec-
tion, the guard node sends a COMMAND DESTROY cell, specifying the error code,
so that the client is forced to choose another sequence of relay nodes and try to
construct a new circuit. If the circuit is extended successfully up to the middle
node, the rest of the circuit is established in the same way. After the circuit has
been built, the client can start transmitting and receiving data over this circuit.
All TCP connections of the user’s application are translated into Tor streams
which are multiplexed over the circuit. Using the initially chosen circuit for a
long time makes profiling attacks easier: the longer the duration of the circuit,
the more time the attacker has to reveal it. For this reason, circuits older than
10 minutes are not allowed to carry new streams (for new streams a new circuit
should be constructed.) After 10 minutes a circuit dies unless it carries a long-
lived stream. In the latter case, the lifetime of the circuit equals the lifetime of
the long-lived stream. In other words, a circuit is not destroyed until at least one
stream is attached to it. In a similar way, a TLS connection between two Tor
relays is not closed if it carries at least one circuit. A TLS connection without
circuits between two Tor routers lives for three minutes. There is one exception
to the rule. A circuit which has never carried a stream (a clean circuit2) lives for
1 hour.

When a pair of Tor routers or a Tor router and a client have several circuits
between them, they try to tunnel them over a single TLS connection. In Fig-
ure 1 communication between two Tor routers is shown. The routers use a single

1 Tor protocol messages are called “cells”.
2 Once a new stream is attached to the circuit, it is marked as “dirty”

4

TLS connection (which is also called Onion Routing connection) which carries a
number of circuits, two in this picture (which may belong to different end users).
Multiple streams of one user may be multiplexed over a single circuit.

TLS Connection

R1 R2

Circuit

Circuit

Stream
Stream

Stream

Stream

Stream

Fig. 1. Circuits and streams multiplexing

2.1 Related papers

Many different attacks on low-latency anonymity networks in general and on
the Tor network in particular are described in the literature. The most success-
ful attacks can be categorized into passive traffic analysis attacks, active traffic
analysis attacks, and attacks based on information leakage from specific applica-
tions. Passive traffic analysis attacks assume that an attacker passively observes
a number of connections in an anonymity network and tries to correlate these
connections either between themselves [4, 10, 1, 6, 2, 14] or with a predefined traf-
fic pattern [9]. Active traffic analysis attacks assume that an attacker can inject
traffic or delay traffic passing through the Tor network, thus modifying traf-
fic and/or timing patterns of a targeted flow [8, 13, 12, 11]. Application specific
attacks use the fact that applications may establish TCP connections directly
(including connections to malicious servers) ignoring Tor and may establish UDP
connections which are not supported by Tor [7]. Also, some applications may leak
IP addresses in protocol messages.

The attacks presented in this paper do not require monitoring nor sending
significant amounts of traffic (only a limited number of Tor protocol management
cells) which makes these attacks relatively cheap. They also do not require the
attacker to have the global view of the network needed by a number of passive
traffic analysis attacks. In addition, the attacks presented in this paper are or-
thogonal to the previous attacks and thus can be used to improve some existing
attacks making them more practical by reducing the traffic costs, or the number
of monitored nodes (for ex. Murdoch’s attack [8]). Finally, the attacks presented
here do not rely on the details of a particular user application or protocol.

3 Revealing Tor connectivity dynamics

Consider an attacker who wants to link the exit and the guard node of a circuit
and thus decrease the anonymity of the user. Given the Tor network connectiv-
ity information, she can determine possible 3-hop paths from the exit node to
the set of guard nodes and eliminate those which are impossible, thus already

5

decreasing the claimed anonymity of Tor network to some extent. However, the
decrease of anonymity depends on the connectivity of the exit router as well
as on the connectivity of its adjacent routers. Even for low bandwidth routers
3, connectivity at a given point in time can be as high as 120-300. For routers
from the set of 10% fastest routers, the connectivity may be higher than 1500.
Thus, exploiting Tor topology at just one point in time may not be sufficient.
A much more efficient way would be to observe Tor connectivity changes over
time. Indeed, an application that requires a persistent connection, will force the
routers in the circuit to maintain a connection between them for the applica-
tion’s lifetime at least. An attacker who wants to trace such a communication
needs to observe the exit node for a while and eliminate routers which it looses
connections to. On the other hand, if user’s application drops a connection, an
attacker may observe a new defect in the topology and link this defect with
the user’s application (note that if the attacker controls the exit node, she can
cause the connection to drop.) In this way, we come to a simple but powerful
idea: observation of local Tor network connectivity dynamics gives us a way to
decrease the anonymity provided by Tor. More specifically, to trace long-lived
(or persistent) connections and to reveal short-lived connections.

3.1 Canonical Connectivity Scanning

We will now show how an attacker can scan a Tor relay to find out what TLS
connections are established with other relays. To explain how this works, we first
have to delve into details of the Tor specification. In order to prevent an attacker
from forcing a relay to open a new TLS connection for each extend request, a
Tor relay uses an existing connection (if any) corresponding to the fingerprint
specified in the extend request no matter what IP address was indicated. This
could potentially allow a malicious party to perform a man-in-the-middle at-
tack. For the two relays R1, R2, the attacker would send an extend request with
a forged IP address X to R1 before other circuits (and hence a connection) are
established between R1 and R2. If the machine at IP address X was then to
connect to R2 and forward all of the traffic it received from R1 to R2 and vice
versa, it could perform a byte-counting attack. To prevent this from happening,
Tor uses a countermeasure called “canonical connections”. Briefly, a connection
to a router is canonical if the destination IP address of this connection corre-
sponds to the one in the consensus. If a Tor relay gets an extend request with a
fingerprint, it should use an existing canonical connection corresponding to this
fingerprint.

We noticed that Canonical connections give an attacker a convenient way to
determine how routers in the Tor network are connected to each other. When
sending a RELAY EXTEND cell, the circuit originator specifies both the identity
fingerprint and the IP address of the router he wants to extend the circuit to.

3 Everywhere in the paper, when speaking of bandwidth we mean not the advertised
bandwidth but actual figures from the Consensus measured by Tor authorities and
used by the Tor client to choose routers for the circuits.

6

Assume that the attacker wants to figure out whether a router A is connected
to a router B. In order to do this, the attacker forges a Tor RELAY EXTEND cell
with the fingerprint of router B and 127.0.0.1 with an unreachable port (port
1 for example) and sends it to router A. When the cell is received, the reaction
of router A depends on whether it has a connection to router B:

– If A has a canonical connection to B (it should be noted that if a connection
exists it is almost always canonical), router A ignores the IP address from the
forged RELAY EXTEND cell and uses the already established TLS connection,
extends the circuit and sends back RELAY EXTENDED cell.

– If A does not have a connection to B then it tries to make a new TLS
connection using the address from the received cell. Obviously, the connec-
tion attempt is refused which causes router A to send a DESTROY cell to the
attacker.

By inspecting the cell the attacker receives back from router A, she can determine
whether router A is connected to router B. Evidently, the attacker can probe
router A for connection with any router contained in the consensus4.

3.2 Connectivity probing via timing attacks

We now consider a second, somewhat less powerful approach for determining
whether two relays are already connected. When a client extends a circuit from
relay R1 to relay R2, the time until he received the RELAY EXTENDED reply from
R2 depends on whether a TLS connection between R1 and R2 is already set up
or whether it needs to be established first. In the later case, both the additional
network and the cryptographic latency are considerable. A TLS connection setup
between Tor relays can cause huge delays, especially if version 2 or above of the
handshake protocol is used. This delay is caused by network latency and the
large number of protocol steps until the CREATE cell can be sent (see Figure 2
for details). If a TLS connection needs to be set up to create a circuit, a delay
on the order of 7.5 round-trip times is added to the circuit creation until the
CREATE cell is received by R1. Approximately 6.5 round trips are required for
the TLS connection setup alone, another round-trip for the v2 handshake. By
sending multiple RELAY EXTEND requests and comparing the time it takes for
the first one to arrive versus subsequent ones, we can determine whether a relay
is connected to another relay. This has been confirmed with experiments. The
disadvantage of this method is that network jitter as well as cell forwarding
delays by the relay scanned can add significant amounts of noise which makes
the method less reliable. Moreover, in contrast to the method described in the
previous subsection, this method will really establish TLS connections to all
routers that are scanned and not just prolong the lifetimes of the connections
that are already open.

4 By coincidence, this scanning technique can not only be used to scan the connectivity
of a Tor router, but also to scan for open ports on random IP addresses from a relay
that has an all-reject exit-policy.

7

R1
TCP: SYN - R2

R1
� TCP: SYN|ACK

R2

R1
TCP: ACK - R2

R1
TLS: ClientHello - R2

R1
� TCP: ACK

R2

R1
� TLS: ServerHello, ServerCertificate, ServerKeyExchange, ServerHelloDone

R2

R1
TCP: ACK - R2

R1
TLS: ClientKeyExchange, ChangeCipherSpec, Finished - R2

R1
� TLS: ChangeCipherSpec, Finished

R2

R1
TCP: ACK - R2

R1
TLS: ClientHello (start of renegotiation) - R2

R1
� TLS: ServerHello , ServerCertificate, ServerKeyExchange, ServerHelloDone

R2

R1
TCP: ACK - R2

R1
TLS: ClientCertificate, ClientKeyExchange, ChangeCipher Spec, Finished - R2

R1
� TLS: ChangeCipherSpec, Finished

R2

R1
TCP: ACK - R2

R1
Tor: VERSIONS - R2

R1
� Tor: NETINFO

R2

R1
Tor: CREATE - R2

R1
� Tor: CREATED

R2

Fig. 2. Tor circuit setup. The last two steps are performed always. Steps marked with
dashed lines are performed only when there is no TLS-connection between R1 and R2.

4 Attacking Tor using connectivity dynamics

4.1 Tracing long-lived streams

Tor is used by many people to establish long-lived SSH sessions, download very
large files (sometimes using file-sharing applications, even though this is frowned
upon) and to communicate over instant messaging networks. The latter usage
of Tor is particularly important for countries with repressive regimes such as
China, Iran, or Syria: people are regularly sent to prison or worse for state-
ments critical of their government. The use-cases described above imply long-
lived TCP-streams which necessarily create long-lived TLS-connections between
Tor routers which are used to carry the stream. Thus, we show how an attacker
knowing the exit node of a long-lived TCP-stream can link it with the guard
node using our scanning techniques5.

One-Hop Attack In this attack, we assume that the attacker controls one or
more fast exit routers which see a significant fraction of the traffic exiting the Tor
network, thus she gets access to pseudonyms of the users (ex. cookies, logins).
This is not an unrealistic scenario; some organizations have control over sizable

5 One important note is that in the current Tor protocol, the connections between two
routers which last more than 7 days are marked as ”bad” for new circuits and no new
circuits can be added to such connections. However persistent circuits inside these
connections are not closed and will continue running. We cannot see these persistent
OR connections using our probing techniques after 7 days have elapsed.

8

portions of the total exit traffic: according to the consensus current at the time
of writing this paper, 7.2% of total exit capacity were provided by the Chaos
Computer Club, 5.9% by Torservers.net and 5.4% by Formless Networking LLC.
The attacker is curious to connect the pseudonyms with the guard triplets for
the users that pass through her Exit relays. Assume that one of the attackers’
nodes E (see Figure 3) is selected as the exit node of a circuit. By looking at
the traffic pattern, the attacker will be able to infer that the connection to the
exit node is likely to be of long-lived type. The attacker then starts the attack:

1. The attacker starts scanning the middle node M for connectivity using either
of the techniques described in the previous section. The set of connected
nodes necessarily includes the guard node G in question and makes up its
initial anonymity set.

2. Next, the attacker continues with the connectivity scanning of the middle
node for several hour or even days in hope that the majority of the nodes
of the initial anonymity set will disconnect (nodes with dash lines on Figure
3.)

3. The attack stops when the anonymity set of the guard node is considerably
reduced or when the user closes the long-lived TCP-stream.

S E M G U

Fig. 3. Long-lived connections attack

S E M G U

Fig. 4. Differential scanning attack

When the attack is finished, the user’s guard node will be contained in the
resulting anonymity set (nodeG and another node with the solid line on Figure 3)
along with some number of other connections that can be considered as ”noise”.
The attacker may also infer extra information from the speed of the connection,
which will indicate whether the middle or the guard node are the bottleneck for
the traffic of the long-lived circuit; this helps her to further shrink the set of
candidates for the guard node since it allows to discard very active routers from
the list of candidate guard nodes.

Two-Hop Attack This attack does not require the attacker to control any
relays in the Tor network and can be performed by a server (or an attacker
close to the server) who tries to reveal the guard nodes of pseudonymous users
connecting to the server. The attack starts from connectivity scanning of the
exit node (similar to one-hop attack) in order to reduce the anonymity set of
the middle node. After having narrowed down the set sufficiently, the candidate

9

middle nodes are scanned resulting in the anonymity set of the guard node. The
attack might be successful if either middle or guard nodes are low-bandwidth
which might be inferred from the connection latency by the attacker. We also
assume that exit node is medium or low-bandwidth. The difficulty in the two-hop
attack comes from the fact that many middle nodes reachable from the exit node
would come from a set of active routers with many connections. This will result
in hundreds of candidate guard nodes even after several days of scanning. This
effect happens due to ”immortal”connections formed between active routers,
which we will describe in Section 5. In spite of its simplicity, the described
attack is quite powerful since:

(i) it does not require control over any relays in the Tor network. The attacker
merely probes relays (probing could be also done from a distributed set of
addresses);

(ii) it is cheap in terms of bandwidth: in order to scan one router the aggregated
amount of traffic that needs to be sent and received is less than 5 MBytes
(for the current size of 3000 routers in Tor network);

(iii) it is fast: the average time of scanning one router is 20 seconds and scanning
of different routers can be easily parallelized.

Experimental results In order to estimate how efficient the attacks can be in
the wild, we used Python to implement a rudimentary Tor client which provides
basic functionality. The client can establish a TLS connection to an arbitrary
Tor router, complete Diffie-Hellman key establishment and send and receive Tor
relay cells. In other words, the client is able to create and extend arbitrary chosen
circuits. Using canonical connectivity scanning, our client is able to check a Tor
router for connectivity with 99% of other routers in the Tor network in less than
30 seconds.

In order to check the correctness of the proposed canonical connectivity scan-
ning, we scanned two routers under our control omicron and Layercake for five
days from February 11th until February 16th, 2012. During the experiment the
routers had bandwidth weights in the range [500 - 1500] for omicron and in
the range [15000-55000] for layercake which means that the later was in the
top 10% set of fastest and thus most frequently chosen routers. Both relays had
Guard flags and did not have Exit flags. Since the routers were operated by us,
we could gather the real time statistics directly from them using the Tor con-
trol port. We then compared the results from the canonical connectivity scan
and from the control port. Figure 5 shows the number of persistently connected
Tor routers over time, i.e. those routers which were connected to our routers at
the start of the experiment and never disconnected during the experiment. The
close match of the results as shown on Figure 5 demonstrates that canonical con-
nections scanning provides reliable results. The slight difference in the results
is explained by the difference of scanning frequency: for canonical connection
scanning, each sample cannot be taken faster than every three minutes (i.e. the
lifetime of an idle Tor TLS connection); the data from the routers control port
however was fetched every ten seconds. According to Figure 5, for the router

10

with bandwidth weight 1500 (omicron), the number of persistently connected
routers decayed from 303 to 20 in just 12 hours. This matches with our predic-
tion from Section 5.1. It then took 4 days for another 18 routers to disconnect.
Our target connection was among the remaining ones. The decay rate of per-
sistent connections of the high-bandwidth router (layercake) looks similar: the
number of persistent connections drops sharply from 1116 to 300 in 12 hours and
then decays slowly. We tested canonical connection scanning against several Tor
routers not under our control. The result for one such router with bandwidth
weight in range [2040-2190] is shown on Figure 6. We observed a very similar
behaviour: a big chunk of connections drop quickly, and then it decays slowly.
After two days of scanning, we found 12 persistent connections.

 0

 200

 400

 600

 800

 1000

 1200

11Feb14:18 12Feb14:18 13Feb14:18 14Feb14:18 15Feb14:18

N
u
m

b
e
r

o
f

co
n
n
e
ct

io
n
s

Time

1500-bw-router, Control-Port-measurements
1500-bw-router, Canonical-Connections-Probing

36000-bw-router, Control-Port-Measurements
36000-bw-router, Canonical-Connections-Probing

Fig. 5. Decay rate of persistent connec-
tions: Canonical vs control port scan

 0

 50

 100

 150

 200

 250

 300

 350

 400

13Feb09:23 13Feb21:26 14Feb09:30 14Feb21:31 15Feb09:34

N
u
m

b
e
r

o
f

co
n
n
e
ct

io
n
s

Time

2170-bw-router, Canonical-connections-probing

Fig. 6. Persistent connections decay
rate for a random router

4.2 Differential scan attack

Attack description Consider user which periodically checks some Web server
or a web service that instructs the user’s browser to periodically re-establish
streams. Google Mail for instance builds a series of short-lived (around 2 minutes)
TCP sessions. Another example are news web sites with auto-refresh contents.
In this section, we describe an attack on such recurrent connections. The aim
of the attacker is to find at least one of the guard nodes of a pseudonymous
user (identified by a cookie or a login credential) that uses such a service for
several days. Note that this attack does not require a single long-lived circuit
or session. It just requires that a Tor client is connected to the Tor network for
non-negligible amount of time within the span of a month (i.e. as long as the
guards are still valid).

Similar to Section 4.1, in this attack, the attacker has control over a significant
fraction of the exit capacity of the Tor network. Assume that a user visits a Web
server S (see Figure 4) that causes recurrent connections to occur. Ten minutes
after the first connection, his initial circuit should expire and the user’s Tor client
will try to build a new circuit. Given a sufficient number of exit nodes controlled

11

by the attacker, the circuit will include one of the attacker’s exit nodes E. Once
the exit node receives incoming traffic destined to the web server it executes the
following sequence of steps:

1. The exit node E observing the stream to the web server determines the
middle node M of the circuit that caused the stream to be established and
transmits it to the attacker.

2. The attacker probes the connectivity of M and remembers the list of routers
connected to it (nodes connected to M both with dash and solid lines on
Figure 4).

3. E sends a DESTROY cell6 down the circuit which leads to the circuit ter-
mination. The circuit termination may lead to the connection termination
between the middle node and the user’s guard node with some probability
which can be estimated using expressions from Section 5.2.

4. The attacker waits for three minutes and starts the scan of M again.
5. The attacker computes the difference between the sets obtained via the first

and the second scans, i.e. he determines connections which were present in
the first list but absent in the second (node G and another node with dash
line.) We say that we have a differential with node G and M if G is in the
difference.

6. The attacker then repeats steps 1-3 each time one of her exit nodes is chosen
for the recurrent connection.

7. Once an attacker has performed the above steps often enough, and given
that the circuit closure event caused the connections closure frequently, she
can derive the user’s three guard nodes: the probability of having the guard
node in the difference should converge to 1/3.

This attack can be further enhanced by scanning the full network at regular and
frequent intervals. Then if the connection to the malicious Exit arrives shortly
after the full network scan, the attacker will have additional differential connec-
tivity information in order to filter the noise. Our experiments have shown that
the full network scan can be done in 3 minutes using 20 hosts (using Amazon
EC2 service, a day of full network scans with 3 minutes between scans costs
around 80 USD).

A similar but less stealthy approach can be used to track any users connec-
tion. Assume that a user connecting to a server chose one of the attacker’s exit
nodes. This allows the attacker to inject a small piece of code in each HTML
document requested by the user, which artificially creates recurrent connections.
Specifically the user can be redirected to an arbitrary address and port. Note
that in the current Tor network, aggregated exit bandwidth for different port is
different, thus by choosing the appropriate port range, the attacker can increase
the probability that her exit node is chosen: at the time of the experiment total
exit capacity was approximately 5 · 106 Kbytes/s, the bandwidth capacity of
scarce ports7 was about 1.2 · 106 Kbytes/s.

6 If the attacker wants to be more stealthy she can just wait until the circuit expires.
7 There are several scarce ports still usable by Web browsers.

12

Experimental results We have implemented a proof of concept version of our
differential scanning technique and have tested it using sets of paths generated
by a modified version of the Tor client – this client does not create any circuits
but simply outputs randomly generated paths with user-specified constraints.
These paths are then used to build circuits through the control port of the Tor
daemon. After a circuit has been built, a scan is conducted, then the circuit
is torn down, the program waits for 200 seconds and scans again. To perform
experiments more quickly we have implemented this in a parallelized manner
on Amazon’s EC2 platform so that many (non-interfering) experiments can be
conducted in parallel. As a first experiment, we used only one guard node with
capacity of 36500 and allowed for middle nodes with capacity of 1600 or lower in
the consensus8. For 150 paths, 125 successful differential scans were performed.
The target guard node has appeared 58 times in the difference sets topping the
list of potential guards.

1. C37B234FAD013453B90375EB55864FEBC876104A: 58 (PPrivCom052) bw=36500
2. CA1CF70F4E6AF9172E6E743AC5F1E918FFE2B476: 35 (spfTOR3) bw=29800
3. 0B7ED44C67DBE50313F0B32BD335D093D0474CE8: 33 (bauruine2) bw=117000
4. 847B1F850344D7876491A54892F904934E4EB85D: 31 (tor26) bw=20
5. DB8C6D8E0D51A42BDDA81A9B8A735B41B2CF95D1: 30 (rainbowwarrior) bw=81300
6. 173B220F9F32F39086D5661274A47485EDA26131: 29 (TorExitProgressbar9) bw=650
7. 1603DFE9FC373ECDA39046FADB5A76B87A4BA36B: 27 (StickItToTheMan) bw=46800
8. 1F52D692FA2C21B23FAD4D711A7BF17BAE2673DF: 26 (alice) bw=7170
9. 47916CAB5878C810E7EF71A316D37FC823CC7F52: 26 (CCN) bw=53100

10. 95A0D58710EA9B61DAD3A01CAD3BE77DACA76BEF: 25 (OccupyMyPants) bw=30300

This shows that differential probing works in practice: there’s a drastic re-
duction in the anonymity set of the guard nodes, even for high capacity guard
nodes. Below is the concrete data of one of the experiments in which we had
chosen guards of capacity 300, 412, and 501, constrained the capacity of the
middle nodes to 30,000 and scanned different middle nodes in 134 trials9:

1. A58E0F05C1939725D7247BA60BA3135DB88209BC: 43 (jefOlewkia), bw = 501
2. D3378ABA009078158DB59E8B36B8EBB88B309BA7: 40 (torn0t), bw = 412
3. 2629979FD21BF3B522E818B73F6F8D0B5D8A5CF0: 40 (tapir), bw = 300
4. A9C039A5FD02FCA06303DCFAABE25C5912C63B26: 29 (chaoscomputerclub5), bw = 173000
5. FA486415B86D28CD047D10F76768E4E88A182F71: 28 (ZhangPoland1), bw = 56400
6. 131B60B9AFE6AEA60042132D648798534ABEA07E: 28 (wagtail), bw = 24400
7. 4536ED68D9DB4B2FF532AD43A632AAF600B798CC: 27 (Unnamed), bw = 116
8. 1D8625690AB9729FB2040D8194EC0D6789A4D092: 25 (TOR1CINIPAC), bw = 43900
9. FC35DE87F6E4022693323275F6B8EE5F72FD21B5: 24 (Unzane), bw = 3160

10. CA1CF70F4E6AF9172E6E743AC5F1E918FFE2B476: 23 (spfTOR3), bw = 28700

Again, although we have some spurious low-bandwidth routers in the top
ten, these results show that the attack described above works well in practice. In
real life, the attacker will perform scans for any circuit which has been detected
to be established by a unique pseudonym of a user and for which the middle
node is below a certain threshold bandwidth.

We now try to estimate how many measurements the attacker should make
when low capacity guards are being used. There are 1,440 minutes in a day; this
means that if the attacker is unlucky (i.e. his exit is not selected and then she
needs to wait for 10 minutes until the circuit expires in order to get another

8 See Section 5 for justification of the choice of the bandwidths. In brief: (1) the
product of bandwidths of the guard node and middle node should not exceed 300
million to avoid “immortal connections ; (2) the attack works best when either the
guard or the middle node are not high-bandwidth.

9 jefOlewkia was involved in 43 circuits, torn0t in 45 and tapir in 46 out of 134.

13

chance) there are 144 measurement chances per day. The fact that an attacker
controlling a fraction f of the exit bandwidth tears down circuits to which she
gets access, increases the number of measurement slots available to the attacker
by 1

1−f , which for f = 1/3 results in 144 f
1−f = 72 slots. If the upper bound

for the capacity of the middle node is set to 30000 then (according to Figure 9)
there is about 40% chance for a circuit to go through such middle node. This
reduces the amount of measurements to 29 per day. The attacker will continue
the attack until he obtains about 40 measurements, which means the attack will
run for about 1 day. Note that the attack is very successful if the bandwidth
of one of the user guard nodes is below 500. There is about 3% chance that a
user’s client has chosen a guard node with low capacity, i.e. Gmin < 500, into his
triplet of guard nodes. Thus this attack could affect more than 10,000 daily users
of the Tor network. If the attacker performs the attack for 7 days, it suffices for
her to control only 5% of the exit bandwidth.

5 Analysis of the attacks

5.1 Long-lived connections

In Section 4.1, one could notice that after a relatively short period of scanning
time, when the number of connections drops to some value, the reduction rate
of the anonymity set of the guard node becomes negligible. This value can be
considered as a threshold for this attack which we try to estimate in this section.

We measured circuit duration distributions over a two high bandwidth routers
connection (layercake bw=35300, and bouazizi bw=69700 for 13 of Feb 2012,
see Figure 7) and a connection between a high bandwidth router and a non-high
bandwidth router (omicron bw=491 and for 13 of Feb 2012, and layercake).
Circuits with lifetime longer than 2 hours constitute less than 1.5% of the total
number of circuits. From this we can assume that the majority of long-lived con-
nections in Tor are not because of long-lived circuits but because the short-lived
circuit creation rate over this connection is high and there is always at least one
circuit inside this connection which prevents it from closing. Such immortal con-
nections form if the product of bandwidths of the two routers exceeds a certain
threshold as will be shown below.

Figure 8 shows the number of new circuits per ten seconds gathered during
two days on one of our active routers. We observed that: (1) circuits arrive
according to the non-homogeneous Poisson process; (2) assuming that client
circuit arrival rate is proportional to the guard router’s bandwidth, we estimate
an average circuit arrival rate R in the whole Tor network to be about 900 circuits
per second (not at peak times). In the expressions below one can also use the
value of circuit arrival rate for the specific time of the day instead of the average
value; (3) the average circuit duration time tavg is about 200 seconds which varies
only slightly for routers with different bandwidth weights. We now estimate the
probability that a pair of routers A and B is connected with almost immortal
connection. Note that a TLS-connection between Tor relays is closed only if no

14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

C
ir

cu
it

s,
 %

Circuit duration, seconds

Fig. 7. Circuit duration distribution
between two high-bandwidth routers

 0

 50

 100

 150

 200

 250

 300

 350

 400

25Jan14:16 25Jan22:16 26Jan06:16 26Jan14:17 26Jan22:17 27Jan06:17

N
e
w

 c
ir

cu
it

s
p
e
r

1
0

 s
e
co

n
d

s

Time, GMT

Fig. 8. Circuit arrival rate for an active
high bandwidth router

 0

 20

 40

 60

 80

 100

 0 25000 50000 75000 100000 125000 150000 175000 200000

P
ro

b
a
b

ili
ty

,
%

Bandwidth weight from Consensus

Probability to choose a node as Guard
Probability to choose a node as Middle

 0

 5

 10

 15

 20

 0 3000 6000 9000 12000 15000

P
ro

b
a
b

ili
ty

,
%

Bandwidth weight from Consensus

Fig. 9. Probability for a node to be
chosen as a guard and a middle node

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12

C
o
n
n
e
ct

io
n
s,

 %

Connection duration, hours

Connections medium-to-high bandwidth
Connections medium-to-medium bandwidth

Fig. 10. Connection duration distribu-
tion

circuits were carried over this connection for three minutes. In other words, for
a connection to stay open, the time between arrivals of two consecutive circuits
should not exceed the average circuit duration plus 3 minutes. Denote by ∆t the
time of the attack. Then during this time, ∆t · R · pa,b new circuits will arrive.
Here pa,b is the probability of routers A and B to form an edge in a new circuit:

pa,b = 2 · bwabwb

bwtotal

(
1

bwguards
+ 1

bwexit

)
, where bwguards is the total bandwidth of

guard nodes, bwexit is the total bandwidth of exit nodes, bwtotal is the total
bandwidth of the whole Tor network, bwa and bwb are bandwidths of routers A
and B respectively 10. Taking into account that circuits arrive according to the
Poisson distribution, the probability to have an ”immortal connection“ can be
computed using the following expression:

Pimmortal(A,B) = (1− e−R·(tavg+tidle)·pa,b)∆t·R·pa,b ,

10 This expression for pa,b is an approximation since it does not take into account
all peculiarities of the Tor path selection algorithm, in particular, the expression
ignores weights which are assigned to a relay based on its position in the circuit and
its flags. We compared our approximation with the precise calculation and found
that simpler approximation is sufficient for our purposes and makes the analysis
easier to understand.

15

where tidle= 180 seconds. A connection between A and B almost never closes if
Pimmortal(A,B) is close to 1. Using this expression we find that immortal con-
nections are formed between routers of bandwidth > 17, 500 (or routers with
product of bandwidths above 300 million). Given the bandwidth of a router,
an attacker can estimate the number of immortal connections that it has and
decide whether it is worthwhile to perform the attack. Figure 11 shows comple-
mentary cumulative bandwidth distribution of Tor relays along with the share
(i.e. the percentage of total number of Tor relays) of persistent connections for
each bandwidth11. For example, if an attacker decides to scan a Tor relay with
bandwidth weight of 5000, she can expect that this relay has about 1% of “im-
mortal” connections. Given 3000 Tor relays, this yields the anonymity set of 30
relays. If bw < 1300, the attack is expected to give the unique solution12. Note
that although only few routers have large percentage of immortal connections,
these routers are high-bandwidth and and are selected more frequently.

In order to give a first order approximation of how long we should wait
until a persistent connection is detectable among other “non-immortal” connec-
tions, we collected connection duration statistics from Tor routers operated by
us for 7 days. Figure 10 shows the connection duration distribution for two pairs
of routers: medium-to-medium bandwidth, medium-to-high bandwidth. In ten
hours, 99% of all non-immortal connections should disconnect for both cases.
Thus, we expect that if a persistent connection under observation has a dura-
tion of more then 10 hours, the probability of its successful identification depends
mostly on the number of immortal connections.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 30000 60000 90000 120000 150000 180000 210000

%
 o

f
ro

u
te

rs

Bandwidth weights from consensus

BW distribution
Percentage of immortal connections

Fig. 11. Tor bandwidth distribution
and share of immortal connections

 0

 20

 40

 60

 80

 100

 120

 140

 0 30000 60000 90000 120000 150000 180000 210000

N
u
m

b
e
r

o
f

d
iff

e
re

n
ti

a
ls

Bandwidth weight

Signal
Noise

Fig. 12. Signal and Noise for differen-
tial scan

11 Note that bandwidth distribution can be approximated by the Pareto distribution
with minimal value xm = 350 and exponent α = 0.85.

12 For 11th of February 17:00, 2012, there were 2388 nodes out of 2897 with bandwidth
less than 1300. Their aggregated capacity was 371,159 out of 9,458,556 total capacity
of the whole Tor network.

16

5.2 Differential scanning attack

In this section, we explore the limits of the differential scan attack. Assume that
an attacker tries to reveal a guard node g by observing circuits {c1, ..., ck} which
leads to scanning of a set of middle nodes M = {mc1 ,mc2 , ...,mck}. Let T denote
the set of all Tor relays and |T | = n. Then we define d : M ×T −→ {0, 1} in the
following way:

d(mci , r) =

{
1 if observed a differential between mci and r for circuit ci
0 otherwise.

The success of the attack depends on: (1) Signal =
∑k
i=1 d(mci , g), i.e. number

of differentials with guard node g , and (2) Noiserj =
∑k
i=1 d(mci , rj), number

of differentials with some other Tor relay rj , j = 1, ..., n. We then use signal-

to-noise ratio SNR = Signal
maxj{Noiserj }

as a measure of the success of the attack.

We first estimate the Signal and Prob[d(mci , g) = 1]. Denote by t0 the time
when ci was destroyed. d(mci , g1) = 1 iff the connection which carried ci closes
3 minutes after ci is destroyed. This happens if no new circuit with duration t
arrives during [t0 − t; t0] and no circuits arrive during [t0; t0 + tidle]. Let f(t) be
the probability density distribution of the circuit duration. Then given that the
circuits arrive according Poisson distribution, we have:

Prob[d(mci , g1) = 1] = e
−
∫∞

0
R·pa,b·t·f(t)dt · e−R·pa,b·tidle = e−R·pa,b·(tavg+tidle),

where R is the current circuit arrival rate of the whole Tor network, and pa,b is
the probability of router A and B to form an edge in a circuit (see Section 5.1).
To estimate the Noise and Prob[d(mci , r) = 1] for some Tor relay r 6= g we use
the following approach: d(mci , r) = 1 if: (a) at the time of the first scan, there
is a connection between mci and r; (b) there is no connection at the time of the
second scan. Then we can derive (details are in the full paper):

Prob[d(m, r) = 1] =

(
1− e−λa,b·(tavg+tidle)

λa,b(tavg + tidle) + 1

)
· e−λa,b·(tavg+tidle),

where λa,b = R · pa,b.
To demonstrate how the above expressions work, we used the set of 125 mid-

dle nodes from the experiment described in Section 4.2 with bandwidth weights
equal or less then 1600. Figure 12 shows: (a) the Signal of the guard node against
its bandwidth. (b) the Noise of a Tor relay against its bandwidth. As can be
seen from the figure, for low-bandwidth nodes the signal is close to its maximum
value. This happens since for this type of node, the probability that the con-
nection between it and a middle node carries just one circuit is very high. Low
circuit arrival rate of a low-bandwidth relay also implies the low value of noise
since the probability to have a connection between it and a middle node is low.

17

6 Discussion and potential countermeasures

In this paper, we have shown two ways to extract topology information of the
Tor network. One way to determine the real connectivity of Tor relays is to
exploit a Tor countermeasure against man-in-the-middle attacks called canonical
connections. This method is cheap but can be eliminated in future versions of Tor
by changing the specification. A potential countermeasure would be to abolish
canonical connections. Of course this must be done while preserving the circuit
multiplexing feature. An obvious approach is to identify connections not only by
the fingerprint but by both the fingerprint and the IP address of the relay. This
prevents our attack, but needs to be weighed against a possibility to perform
denial-of-service by resource exhaustion against Tor relays.

A different approach for measuring relay connectivity is to use timing infor-
mation of the connection establishment as a side channel: circuit extension by
one hop takes much less time if the link on this hop already exists. This method
is less robust then the one exploiting canonical connections, but at the same time
the countermeasures are not straightforward; experiences in side-channel crypt-
analysis have shown that simple countermeasures like adding randomized delays
can often be defeated. At the same time, a fully connected graph for the Tor
network – i.e. having each relay connected to all the other relays at all times –
probably is too expensive from a performance standpoint. The balance to strike
here is to add sufficient noise to make timing attacks unreliable to attackers.

Finally we note that since our connectivity revealing techniques are orthog-
onal to the existing attacks described in the literature, they can be used to
improve many of them substantially. Indeed, during the times when the number
of Tor routers was small, several attacks were available to adversaries. These at-
tacks allowed to link the exit and entry nodes of a user’s circuit. However, once
the number of Tor routers grew, those attacks became too expensive in terms of
required bandwidth and time. This is because for those attacks to be successful,
exhaustive probing of each link in the Tor network was required. Given a way
to determine the real connectivity of Tor network, these attacks can become
practical again since the amount of links to be probed is significantly reduced.

7 Conclusion

All prior research on Tor assumed opacity of the Tor network topology – meaning
that the attacker had to assume a fully connected graph. In practice, the real
degree of a node in this graph is substantially smaller than its maximum at any
given point in time. For the first time, we have shown methods to determine the
real connectivity of relays in the Tor network and the dynamics of the topology
of the whole Tor network. Based on this, we described several novel attacks that
use this information to deanonymize the entry points of the users into the Tor
network.

18

Acknowledgements

We would like to thank anonymous reviewers for numerous useful comments.

References

1. Back, A., Möller, U., and Stiglic, A. Traffic analysis attacks and trade-offs in
anonymity providing systems. In Proceedings of the 4th International Workshop on
Information Hiding (London, UK, UK, 2001), IHW ’01, Springer-Verlag, pp. 245–
257.

2. Bissias, G. D., Liberatore, M., Jensen, D., and Levine, B. N. Privacy vul-
nerabilities in encrypted http streams. In In Proceedings of Privacy Enhancing
Technologies Workshop (PET 2005 (2005), pp. 1–11.

3. Chaum, D. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24, 2 (1981), 84–88.

4. Danezis, G. The traffic analysis of continuous-time mixes. In In Proceedings of
Privacy Enhancing Technologies workshop (PET 2004), LNCS (2004), pp. 35–50.

5. Goldschlag, D. M., Reed, M. G., and Syverson, P. F. Hiding routing in-
formation. In Information Hiding 1996 (1996), R. J. Anderson, Ed., vol. 1174 of
Lecture Notes in Computer Science, Springer, pp. 137–150.

6. Levine, B. N., Reiter, M. K., Wang, C., and Wright, M. Timing attacks in
low-latency mix systems. In Proceedings of Financial Crypto 2004 (2004), vol. 3110
of LNCS, Springer, pp. 251–265.

7. Manils, P., Chaabane, A., le Blond, S., Kaafar, M., Castelluccia,
C., Legout, A., and Dabbous, W. Compromising tor anonymity exploiting
p2p information leakage. In Technical Report 00471556, INRIA, April 2010.
http://arxiv.org/abs/1004.1461.

8. Murdoch, S. J., and Danezis, G. Low-cost traffic analysis of Tor. In In Pro-
ceedings of the 2005 IEEE Symposium on Security and Privacy. IEEE CS (2005),
pp. 183–195.

9. Panchenko, A., Niessen, L., , and Zinnen, A. Website fingerprinting in onion
routing based anonymization networks. ACM, pp. 1–10.

10. Serjantov, A., and Sewell, P. Passive attack analysis for connection-based
anonymity systems. In In Proceedings of European Symposium on Research in
Computer Security (ESORICS (2003), pp. 116–131.

11. Wang, X., Chen, S., and Jajodia, S. Network flow watermarking attack on
low-latency anonymous communication systems. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy (Washington, DC, USA, 2007), SP ’07, IEEE
Computer Society, pp. 116–130.

12. Wang, X., and Reeves, D. S. Robust correlation of encrypted attack traffic
through stepping stones by manipulation of interpacket delays. In Proceedings of
the 10th ACM conference on Computer and communications security (New York,
NY, USA, 2003), CCS ’03, ACM, pp. 20–29.

13. Yu, W., Fu, X., Graham, S., Xuan, D., and Zhao, W. Dsss-based flow marking
technique for invisible traceback. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (Washington, DC, USA, 2007), SP ’07, IEEE Computer
Society, pp. 18–32.

14. Zhu, Y., Fu, X., Graham, B., Bettati, R., and Zhao, W. On flow correla-
tion attacks and countermeasures in mix networks. In in Proceedings of Privacy
Enhancing Technologies workshop (2004), pp. 26–28.

