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ABSTRACT
Recent studies on Website Fingerprinting (WF) claim to
have found highly effective attacks on Tor. However, these
studies make assumptions about user settings, adversary ca-
pabilities, and the nature of the Web that do not necessar-
ily hold in practical scenarios. The following study criti-
cally evaluates these assumptions by conducting the attack
where the assumptions do not hold. We show that certain
variables, for example, user’s browsing habits, differences in
location and version of Tor Browser Bundle, that are usually
omitted from the current WF model have a significant im-
pact on the efficacy of the attack. We also empirically show
how prior work succumbs to the base rate fallacy in the
open-world scenario. We address this problem by augment-
ing our classification method with a verification step. We
conclude that even though this approach reduces the num-
ber of false positives over 63%, it does not completely solve
the problem, which remains an open issue for WF attacks.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; K.4 [Computers and So-
ciety]: Public Policy Issues—Privacy

Keywords
Website fingerprinting; Tor; privacy

1. INTRODUCTION
Anonymous communication systems are designed to pro-

tect users from malicious websites and network eavesdrop-
pers by providing means to hide the content and metadata of
communications. The Onion Router (Tor), with about three
million daily users, is the most popular anonymous commu-
nication network. It is specially designed for low-latency
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applications such as web browsing [8, 29]. Tor routes con-
nections through three-hop circuits and encrypts the traffic
in layers using onion routing [10], so that none of the re-
lays can know both the origin and the destination of the
communication at the same time.

Although Tor hides the routing information and communi-
cation content, the analysis of the network traffic alone may
provide very rich information to an attacker with sufficient
capabilities. Using timing, frequency and length of the mes-
sages, an attacker can bypass otherwise very robust security
mechanisms and identify the communicating parties [7, 22].

Website Fingerprinting (WF) allows an adversary to learn
information about a user’s web browsing activity by recog-
nizing patterns in his traffic. The adversary in this attack
compares the network traces of Tor users to a set of pre-
recorded webpage fingerprints to identify the page that is
being accessed. WF is different from traffic correlation at-
tacks where the adversary has access to both entry and exit
nodes and matches the patterns in the incoming and outgo-
ing traffic to the Tor network [14]. WF is also different from
deep packet inspection protocols and related traffic analysis
techniques that are used to censor Tor [13].

Several previous works demonstrate the effectiveness of
WF attacks on Tor despite the encryption, padding and ap-
plication level defenses such as randomized pipelining [3,11,
23, 26, 32]. Although we appreciate the importance, novelty
and scientific rigor of these studies, the assumptions they
made vastly simplify the problem and give unrealistic ad-
vantages to the adversary by either simplifying the world or
overestimating the adversary’s capabilities. Some of these
assumptions are challenging and hard to attain realistically
in practice [11]. For example, most current works implic-
itly/explicitly assume that the adversary and user both use
the same Tor Browser Bundle (TBB), visit the same local-
ized version of a limited set of pages/sites almost at the same
time (or a few days apart) by using only one tab browsing.
However, violating at least one of these assumptions can re-
duce the efficacy of the attack significantly to a point that
might not make WF a threat in the real world. The authors
of these studies aim to provide an upper bound for the effi-
cacy of the attacks and argue that a particular attacker or
scenario might satisfy them. Also it has been argued that
in a real-world scenario, proposed countermeasures against
WF would actually be more efficient than these studies have
estimated [25].



The goal of this study is to assess the practical feasibility
of WF attacks proposed in prior work. Our contributions
and their organization in the paper are as follows:

A critical evaluation of assumptions made by prior
WF studies: We provide an extensive model of the WF
attack, define the assumptions made by prior WF studies
on the adversary, the client-setting and the Web. We argue
that these assumptions are unrealistic because they are over-
simplifying the problem thus are unlikely to hold in practice
(Section 3).

An analysis of the variables that affect the accuracy
of WF attacks: We pin down the variables that were omit-
ted from the models considered in previous work that have
an impact on the practical effectiveness and feasibility of
the attacks (Section 4). We present the results of a set of
comparative experiments to evaluate the effects of these vari-
ables on traffic traces and classifier accuracy. We show that,
for some of the variables, the accuracy can drop up to 70%.

An approach to reduce false positive rates: We show
the effect of false positives in an open-world of 35K webpages
and use Classify-Verify in the WF domain on the estimated
probabilities of the classifier which reduces the number of
false positives over 63% (Section 5).

A model of the adversary’s cost: We model the cost
that an adversary would incur to maintain a successful WF
system (Section 6). We suspect that maintaining a perfect
WF system is costly as the adversary needs to collect infor-
mation about different localized versions of the webpages,
user’s browsing settings and update the system over time to
recover from data staleness.

2. WEBSITE FINGERPRINTING
The main objective of an adversary in a typical WF sce-

nario is to identify which page the user is visiting. The ad-
versary may want to learn this information for surveillance
or intelligence purposes.

The WF attack is typically treated as a classification prob-
lem, where classification categories are webpages and obser-
vations are traffic traces. The adversary first collects traffic
traces by visiting webpages and trains a supervised classifier
using features such as the length, direction and inter-arrival
times of network packets.

Whenever a user visits a webpage over Tor, the adversary
records the network trace by, for instance, intercepting the
traffic locally (LAN), by having access to routers of the user’s
ISP, or by controlling an entry guard to the Tor network. He
then runs the classifier on the intercepted network trace to
guess the site the user has visited.

The first WF attacks were developed to identify pages
within a single website over SSL connections [4, 20]. In
2002, Sun et al. tackled the more challenging problem of

identifying individual pages within a set of websites [28]
which led to Hintz’s attack on an anonymizing web proxy
(SafeWeb) [12]. Many WF studies on one-hop proxy attacks
have followed [2,9, 16,18].

Herrmann et al. [11] deployed the first WF attack on the
Tor anonymity network with only a 3% success rate for a
world of 775 pages. The attacks that followed significantly
improved the accuracy: Shi and Matsuura obtained 50%
success rate for 20 pages [26]; Panchenko et al., obtained
54.61% accuracy using Herrmann’s dataset [23]; and, finally,
Cai et al. and Wang and Goldberg report success rates over
90% using edit-distance based classifiers on a world of 100
pages [3, 32].

3. MODEL
We model the WF adversary as passive and local : the ad-

versary is able to eavesdrop on the user’s traffic, but cannot
add, drop or modify packets. We also assume that the ad-
versary cannot decrypt the contents of the network packets,
as that would render WF attacks unnecessary.
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Figure 1: The basic WF targeted attack in Tor.

Figure 1 depicts the basic WF scenario: the attacker taps
the network between the victim and the Tor entry guard
and collects traffic traces, which he then compares against
his database of webpage fingerprints. We make a distinction
between two types of attacks based on the number of users
targeted by the adversary and the resources at his disposal.

Targeted: In this attack, the adversary targets a specific
victim to retrieve his browsing activity. This allows the at-
tacker to train a classifier under conditions similar to those
of the victim (see Figure 1), potentially increasing the suc-
cess of the attack. The adversary may have enough back-
ground knowledge about the user to reproduce his configu-
ration, or he could detect it from the observed traffic data.
In Section 6, we discuss how difficult it is for the attacker to
discover properties about the user’s setting.

Non-targeted (dragnet surveillance): In this case, the
adversary targets a set of users instead of one. ISPs, Inter-
net exchanges and entry guard operators are in a position to
deploy this attack since they can intercept the network traf-
fic of many users (see Figures 2a and 2b, respectively). The
attacker trains the classifier on a specific setting and uses
the same classifier on all communications that he observes.

Users

ISP

Tor

Web

(a) ISP level adversary.
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(b) Malicious entry guard.

Figure 2: WF Non-targeted attacks in Tor.



3.1 Assumptions
We compiled the assumptions made in the literature of

WF attacks on Tor. We divided the basic model in three
parts: (i) Client-side, (ii) Adversary, and (iii) Web, and clas-
sified the assumptions according to the part of the model
they relate to. We note that the assumptions are not mu-
tually exclusive and are open to other classifications. The
papers that explicitly mention these assumptions are listed
in Table 1.

Client-setting.

Closed-world: There are only k webpages that the user
may visit. This is a very strong assumption because k is al-
ways very small compared to the actual number of existing
webpages. Some authors have also evaluated their classifiers
in an open-world scenario [3, 23, 32], where there is a set of
k target pages being monitored but the user is allowed to
visit pages that are not in that set.

Browsing behaviour: The users follow a specific be-
haviour. For example: users browse the web sequentially,
one page after the other, having only a single tab open. Nev-
ertheless, real-world studies found that users tend to have
multiple open tabs or windows [21,31], which allow them to
load several pages at once. Although we do not have access
to data collected from Tor users, it is safe to think that Tor
users exhibit this behavior since their connection is slower.
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(a) Histogram of trace sizes

(b) Doodle and standard versions

Figure 3: Different versions of the Google homepage and
corresponding histogram of trace sizes for 40 visits. The
histogram shows that the distributions of packet sizes are
significantly different for the same page visited on different
dates.

Web.

Template websites: All websites are built using tem-
plates. Cai et al. used a Hidden Markov Model (HMM) to
leverage the link structure of websites for WF [3]. The au-
thors made this assumption in order to simplify their model
and reduce the number of states in the HMM.

There are further unrealistic assumptions about the Web
that are not explicit but that may improve the accuracy of
the WF attack. For instance, one recent study used localized
(German) versions of the webpages in order to avoid differ-
ent language versions [32]. In our experiments, we observed

cases such as ask.com where the total trace size of the En-
glish version was about five times bigger than the German
version of the same webpage. Given that the language of
the webpage will be selected according to the Tor exit node,
assuming that users would visit the same local version is a
clear advantage to the adversary.

Even if we limit ourselves to localized versions of web-
pages, there are still other sources of dynamism such as bot
detection, changing graphics and third-party content. Fig-
ure 3a shows the histogram of sizes of 40 traces collected
from google.de between February 14-16. We observe a clear
distinction between two sets of trace sizes. The group on
the left corresponds to the page without a doodle (left in
Figure 3b). The group on the right with larger network foot-
print corresponds to the version with a special doodle for St.
Valentine’s day (right in Figure 3b). Note that Wang and
Goldberg concluded that sites that change in size are hard
to classify correctly [32].

Adversary.

Page load parsing: The adversary can detect the begin-
ning and the end of different page loads in a traffic trace.
This has been shown to be a very hard task in the context
of session reconstruction from real-world network traffic [6].

No background traffic: The adversary can filter all back-
ground network traffic produced by other applications or
other connections going through the same Tor circuit. Tor is
increasingly used in settings where multiple applications or
complete operating system traffic is sent over the Tor net-
work1. In these cases, separating the browsing traffic from
the background traffic may present a nontrivial challenge to
the adversary.

Replicability: The adversary can train his classifier un-
der the same conditions as the victim. For instance, the
adversary is assumed to be able to replicate client-side set-
tings such as operating system, network connection or Tor
Browser Bundle (TBB) version. This assumption allows
researchers to train and test on data collected using the
same settings. Depending on the type of attack this may
be impossible, as the adversary may encounter difficulties in
detecting and replicating users’ configuration (especially in
non-targeted attacks).

Assumption Explicitly made by

Closed-world [11,26]
Browsing behavior [11]
Page load parsing [3, 11,23,26,32]
No background noise [3, 11,23,26,32]
Replicability [11,26]
Template websites [3]

Table 1: Assumptions and references to papers that make
explicit mention to them.

4. EVALUATION
In this section we challenge some of the assumptions de-

scribed in Section 3. The assumptions are: Closed-world,
browsing behavior, no background traffic and replicability.

1 https://tails.boum.org/



For each assumption we identify the variables that are ruled
out of the model by the assumption. Our objective is to
measure the effect of these variables on the accuracy of WF
attacks.

4.1 Datasets
We used two different lists of URLs for our crawls: the

top Alexa ranking and the Active Linguistic Authentication
Datatset (ALAD) [15]. The Alexa dataset is a well known
list of most visited URLs that has been widely used in previ-
ous WF studies as well as in other research domains. Testing
on data collected by crawling URLs in the Alexa ranking im-
plies that the adversary always knows which pages the users
are going to visit and can train a classifier on those pages.
We want to test the reliability of a classifier when this as-
sumption does not hold.

The Active Linguistic Authentication Dataset
(ALAD) [15] is a dataset of web visits of real-world
users, collected for the purpose of behavioral biometrics
evaluation. The complete dataset contains data collected
from 80 paid users in a simulated work environment. These
users used the computers provided by the researchers
for a total of 40 hours to perform some assigned tasks:
open-ended blogging (at least 6 hours a day) and summary
writing of given news articles (at least 2 hours a day). We
found that these users were browsing the web to check their
emails, social network sites and searching for jobs.

Top Alexa Home page Other pages Not in Alexa
100 4.84% 50.34% 44.82%
1000 5.81% 60.26% 33.93%
10000 6.33% 68.01% 25.66%

Table 2: ALAD dataset statistics

The users browsed total 38,716 unique URLs (excluding
news articles) which were loaded 89,719 times. These URLs
include some top ranked Alexa sites, such as google.com,
facebook.com and youtube.com and some sites that are not
in Alexa top 1 million list, such as bakery-square.com,
miresearch.org. Over 44% of the sites were not in the
Alexa top 100, and 25% of the sites were not in the Alexa
top 10000. Over 50% sites were pages other than the
front page (shown in Table 2), such as different search
pages on Google/Wikipedia, a subdomain of a site (such
as dell.msn.com) and logged-in pages of Facebook.

4.2 Data collection
To collect network traces, we used TBB combined with

Selenium2 to visit the pages, and recorded the network pack-
ets using a network packet dump tool called dumpcap. We
used the Stem library to control and configure the Tor pro-
cess [30]. Following Wang and Goldberg we extended the
10 minute circuit renewal period to 600,000 and disabled
the UseEntryGuards to avoid using a fixed set of guard
nodes [32]. We also used their methods to parse the Tor
cells and remove noise by filtering acknowledgements and
SENDMEs.

We crawled the webpages in batches. For each batch, we
visited each page 4 times and collected between 5 and 10
batches of data in each crawl, resulting in 20 to 40 visits for
each webpage in total. We waited 5 seconds after each page
had finished loading and left 5 second pauses between each

2http://docs.seleniumhq.org/

visit. The batches are collected in a round-robin fashion,
hours apart from each other. We made over 50 such crawls
for the experiments presented in this paper and we will share
the data with other researchers upon request.

We used two physical and three cloud-based virtual ma-
chines to run crawls from different geographical locations.
In order to have identical crawler configurations, we used
Linux Container (LXC) based virtualization running on the
same distribution and version of the GNU/Linux operating
system. We disabled operating system updates to prevent
background network traffic and never ran more than one
crawler on a machine at the same time. We made sure that
the average CPU load of the machines is low, as this may
affect the WF defenses shipped in the TBB3.

4.3 Methodology
In order to reduce the confounding effect of other vari-

ables in the measurement, we crawled the same set of web-
pages multiple times by changing the value of the variable
under evaluation and fixing the rest of the variables. For
each variable that we wanted to evaluate, we defined a con-
trol crawl by setting the variable to its default value (e.g.,
UseEntryGuards = 1), and a test crawl, by setting the vari-
able to the value of interest (e.g., UseEntryGuards = 0).

Note that the randomized nature of the path selection
algorithm of Tor and effect of time are two control variables
that we cannot completely fix when measuring the effect of
other variables. We tried to overcome this by using cross-
validation and minimizing the time gap between the control
and test crawl in all of our experiments.

These experiments are composed by the two following
steps:

1. k-fold cross-validation using data of the control crawl.

2. Evaluate classifier’s accuracy training on the control
crawl and testing with data from the test crawl.

The accuracy obtained in Step 1, the case in which the ad-
versary can train and test under the exact same conditions,
is used as a baseline for comparison. We then compare the
accuracy obtained in Step 2 with this baseline. We specify
the details of the cross-validation in Step 1 and the testing
in Step 2 later in this section.

Classifiers designed for WF attacks are based on features
extracted from the length, direction and inter-arrival times
of network packets, such as unique number of packet lengths
or the total bandwidth consumed. The variables we evaluate
in this section affect traffic features and therefore may affect
each classifier in a different manner (cf., [33]). For the
present study we tried to pick a classifier for each of the
learning models and sets of features studied in prior work.
In Table 3 we list the classifiers that we have evaluated.

We observed that the relative accuracy changes are con-
sistent across the classifiers and the variables we evaluated.
In most cases, classifier W performed better than the others.
For this reason, our presentation of the results is focused on
classifier W.

Classifier W is based on the Fast Levenshtein-like distance
[32]. We used this classifier instead of the one based on the
OSAD4 distance presented in the same paper. Although

3 https://trac.torproject.org/projects/tor/ticket/
8470\#comment:7
4Optimal String Alignment Distance



Name Model Features

H [11] Naive Bayes Packet lengths
Packet lengths

P [23] SVM Order
Total bytes
Total time

D [9] N-grams Up/Downstream bytes
Bytes in traffic bursts

W [32] SVM (Fast-Levenshtein) Cell traces
T Decision tree Same features as P

Table 3: Classifiers used for the evaluation.

the latter attained greater accuracy in Tor, it is considerably
slower and can become impractical in certain circumstances,
as we will further analyse in Section 6. Furthermore, for the
OSAD distance we obtained over 90% accuracy scores in
our control crawls and, as in the original paper, we consis-
tently observed a 20% decrease in accuracy when evaluating
classifier W. For this reason, we believe the results obtained
with this classifier are comparable with its more accurate
counterpart.

For the evaluation of each classifier we followed a similar
approach to the one described by Dyer et al. First, we fixed
the size of the world to a certain number of pages (k). For
each page of the training crawl, we selected ntrain random
batches and picked Ttrain traffic traces in total. For each
page of the testing crawl, we selected ntest random batches
and picked Ttest traces in total. We averaged the results by
repeating each experiment m times, each time choosing a
different training and testing set. Then, the accuracy of the
classifier was calculated by Total correct predictions

Total test instances
= p

mTtest
,

where p is the total number of correct predictions. We made
sure that for the validation of the control crawl, training and
testing traces were never taken from the same batch. The
classification parameters are listed in Table 4.

Parameter Description
k Number of sites in the world.
ntrain/test Number of batches for training/testing.
Ttrain/test Number of instances for training/testing.
p Total number of predictions.
m Number of trials.

Table 4: Description of classification parameters defined for
an experiment.

From now on, we refer to Acc control as the average ac-
curacy obtained for the m trials in control crawl (Step 1)
and Acc test as the average accuracy for m trials obtained
in Step 2. In the results, the standard deviation of the ac-
curacy obtained for m trials is shown in parentheses next to
the average value.

We also have designed our own attack based on decision
tree learning and using the features proposed by Panchenko
et al. [23]. Decision tree learning uses binary trees as data
structures to classify observations. Leaves represent class
labels and nodes are conditions on feature values that di-
vide the set of observations. Features that better divide the
data according to a certain criterion (information gain in
our case) are chosen first.

For these experiments we have extended Dyer et al.’s
Peekaboo framework [9] and the source code of the classifier
presented by Wang and Goldberg [32].

4.4 Time
Webpages are constantly changing their content. This is

reflected in the traffic traces and consequently in the accu-
racy of the WF attack. In this section we used crawls of the
Alexa Top 100 pages taken at different instants in time to
evaluate the effect of staleness on WF.
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Figure 4: Staleness of our data over time. Each data point is
the 10-fold crossvalidation accuracy of the classifier W which
is trained using the traces from t = 0 and tested using traces
from 0 ≤ t ≤ 90. For every experiment m = 10, ntrain = 9,
ntest = 1, Ttrain = 36, ttest = 4 and k = 100.

For this experiment, we train a classifier using the traces
of the control crawl, collected at time t = 0, and test it using
traces collected within 90 days of the control crawl (0 ≤ t ≤
90). Figure 4 shows the accuracy obtained for the W classifier
for crawls over the same list of URLs at different points
in time. For the rest of the classifiers we observed similar
drops in accuracy. The first data point is the accuracy of the
control crawl, taken at t = 0. The second point is taken 9
days after the control crawl (t = 9), and so on until the last
data point that corresponds to a test crawl taken 90 days
later.

We observe that the accuracy drops extremely fast over
time. In our experiments it takes less than 10 days to drop
under 50%. Since we observed such a drop in accuracy due
to time, we picked control and test crawls for the following
experiments that fall within a period of 5 days.

This strong effect of time in the classifier’s accuracy poses
a challenge to the adversary who will need to train the clas-
sifier on a regular basis. Depending on the size of the world
that he aims to cover, the cost of training may exceed the
time in which data provides reasonable accuracy rates. We
discuss this point in more detail in Section 6.

4.5 Multitab browsing
In this experiment we evaluate the success of a classifier

when trained on single tab browsing, as in prior WF attacks,
and tested on traces collected with multitab browsing.

In order to simulate multitab browsing behaviour, we
crawled the home pages of Alexa Top 100 sites [1] while load-
ing another webpage in the background. The background
page was loaded with a delay of 0.5-5 seconds and was cho-
sen at random from the same list, but kept constant for
each batch. Then we train five classifiers from prior work,
P, H, D, W, T (described in Table 3), using single tab traces
of Alexa Top 100 webpages and test it using the multitab
traces we collected. We consider a classifier successful if it
can identify either the foreground page or the background
page.

We observe a dramatic drop in the accuracy for all the
classifiers with respect to the accuracy obtained with the
control crawl (when the classifiers are trained and tested us-
ing single tab traces), even when the delay between the first
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Figure 5: Average accuracies of P, H, D, T classifiers for a delay
of 0.5 sec between the loading start times of the foreground
page and the background page. Light gray bars represent the
accuracies of the control crawls (Step 1). We plot in darker
colour the accuracies obtained by training in the control
and testing in the multitab crawl (Step 2). Green intervals
indicate the standard deviation of the accuracy.

page and the background page was of 0.5 seconds (Figure 5
and Table 5). We also observe a drop in the accuracy while
we increase the size of the world, although the change in the
accuracy was similar for all classifiers ((Figure 5).

We notice very similar accuracies for classifiers P and T in
this experiment. These two classifiers are built using the
same set of features but different learning models. This
might imply that the specific learning model is not as im-
portant for a successful attack as the feature selection. Dyer
et al. reported a similar observation between Naive Bayes
and SVM classifiers.

We also vary the time gap between the two pages to ac-
count for different delays between opening the two tabs.
Since the W classifier is based on an edit-distance, we ex-
pect the distance between the observed traffic trace and the
trace of any of the two loaded pages to be smaller with re-
spect to shorter delays, since there would be less overlap
between the traffic traces of the two loaded pages. However,
we do not observe a significant evidence that may support
this hypothesis in the evaluation for 0.5, 3 and 5 seconds of
delay (Table 5) . The average page load for the test crawl for
the 5 second gap experiment is 15 seconds, leaving on aver-
age 30% of the original trace uncovered by the background
traffic. Even in this case, the accuracy with respect to the
control crawl drops by over 68%.

Delay Acc test Acc control
0.5 sec 9.8% (±3.1%) 77.08% (±2.72%)
3 sec 7.9% (±0.8%) 77.08% (±2.72%)
5 sec 8.23% (±2.32%) 77.08% (±2.72%)

Table 5: Average accuracies and standard deviations (in
parentheses) of classifier W for different delays of starting the
background page load. The parameters for this experiment
are: ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4, m = 10
and k = 100.

So far we showed the results obtained when the adver-
sary is able to identify either the foreground page or the
background page. We also consider the case where the user
utilizes a countermeasure such as Camouflage [23]. In that
case, the user is not interested in the contents of the back-
ground page thus the adversary is successful only if he is able

to identify the foreground page. The accuracies obtained us-
ing this definition halved the accuracies showed in Table 5
(Acc test) and Figure 5.

4.6 Tor Browser Bundle Versions
In this section we evaluate the effect of different TBB

versions and properties of TBB on WF. We evaluate the
impact of having different TBB versions for training and
testing. In practice, many TBB versions coexist, largely
because of the lack of an auto-update functionality. It may
be difficult for the attacker to know the exact version that is
being used by the user. We also changed the configuration
of Tor in the torrc to see how deviating from the default
configuration may affect the success of the attack.

TBB Versions
We evaluate different combinations of TBB versions 2.4.7,
3.5 and 3.5.2.1 for the control (training) and the test crawls.
Table 6 shows the accuracy of classifier W when it trained on
traces from Alexa Top 100 sites collected using TBB in the
column and tested on the traces from the same sites collected
using the TBB in the rows.

For versions 3.5 and 3.5.2.1 we observe high accuracies of
W independently of the training and testing choices. This
may imply that the countermeasure based on request ran-
domization integrated in the TBB [24] may not be effective.
On the other hand, when we evaluate 2.4.7 we observe low
accuracies for combinations with 3.5. This is probably due
to the major differences between the two versions. Version
3.5.2.1 is only a subversion of the TBB 3.5 which does not
incorporate as many changes as the difference between 3.5
and 2.4.7.

TBB 2.4.7 (Test) 3.5 (Test) 3.5.2.1 (Test)
2.4.7 (Train) 62.70% (±2.8%) 29.93% (±2.54%) 12.30% (±1.47%)
3.5 (Train) 16.25% (±4.51%) 76.38% (±4.97%) 72.43% (±3.22%)

3.5.2.1 (Train) 6.51% (±1.15%) 66.75% (±3.68%) 79.58% (±2.45%)

Table 6: Entry in row X, column Y corresponds to the
Acc Test (Step 2) and standard deviation (in parenthe-
ses) obtained by training in TBB version X and testing in
TBB version Y . The configuration for these experiments is:
ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4, m = 10 and
k = 100.

TBB properties
We vary the following properties: UseEntryGuards and Nu-

mEntryGuards. UseEntryGuards indicates the policy for en-
try guard selection. It can take the following two values:
enabled, Tor selects three entry guards for a long period of
time; or disabled, picks one entry guard at random every
time it builds a new circuit. NumEntryGuards sets the num-
ber of entry guards that will be available for the construction
of a circuit (Default: 3). Note that even though we specify
a value for these variables, we clean the Tor data directory
after each batch crawl and, therefore, entry guards possibly
change across batches.

We trained and tested on the control crawl for three dif-
ferent pairs of values (only Step 1), listed in Table 7. The
default configuration is to choose an entry guard from a list
of three possible entry guards (shown in the first row of Ta-
ble 7). We also evaluated the setting used by Wang and
Goldberg [32], which consists in disabling UseEntryGuards

(second row in Table 7). Finally, we enabled UseEntry-



Guards but used a list of only one possible entry guard (third
row in Table 7).

Entry guard config. Acc control
NumEntryGuards = 3

64.40% (±3.60%)
UseEntryGuards = 1

UseEntryGuards = 0 62.70% (±2.80%)
NumEntryGuards = 1

70.38% (±11.70%)
UseEntryGuards = 1

Table 7: Accuracy for different entry guard configurations.
For these experiments we used the following parameters:
ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4, m = 10
and k = 100.

In Table 7 we summarize the results for these three dif-
ferent configurations using classifier W. We can see that the
standard deviation increases significantly for the case where
we fix one entry guard. Even though we fix the entry guard
for all circuits in a batch, since we remove the Tor data direc-
tory after each batch, we force the entry guard to change.
On the other hand, allowing Tor to pick a different entry
guard for each circuit results in a more balanced distribu-
tion because it is more likely that the same entry guards are
being used in each single batch, thus there is lower variance
across batches. We must clarify that these results are not
concluding and there may be a different explanation for such
difference in standard deviation.

4.7 Network
Another important variable that is being ruled out by the

assumptions described in the previous section is the Inter-
net connection. We suspect that it is unrealistic to assume
the adversary is able to train using the same exact Inter-
net connection as the user, especially in the non-targeted
attack. For that, he might need more capabilities than the
ones included in the basic model.

In this section we study the effect of different network
locations on the accuracy of the W classifier. To that end,
we crawled in three networks located in cities in different
continents: Leuven, New York and Singapore.

Loc. Train Loc. Test Acc test Acc control
Leuven New York 8.83% (±2.87%) 66.95% (±2.87%)
Leuven Singapore 9.33% (±0.98%) 66.95% (±2.87%)

Singapore New York 68.53% (±3.24%) 76.40% (±5.99%)

Table 8: Accuracy for different network locations. The Acc
test (Step 2) is calculated by training on data from Location
Train and testing in data from Location Test. The param-
eters for the setting of these experiments are: ntrain = 9,
ntest = 1, Ttrain = 36, ttest = 4, m = 10 and k = 100.

Our results show that the accuracy drop between the
crawls training on Leuven and testing in one of the other
two locations is relatively greater than the accuracy drop
observed in the experiments between Singapore and New
York. Since the VM in Leuven is located within a university
network and the other two VMs in data centers belonging
to the same company, we attribute this difference to the
fact that data center Internet connections tend to be closer
to the Internet backbone. This could account for similar
properties in the connection of the VMs in New York and
Singapore that helped the classifier matching training and
testing instances.

4.8 The importance of false positives
In this section we evaluate the open-world scenario in

which an adversary monitors a small subset of the total
number of pages that a user can visit, thus cannot train
a classifier using every possible page.

Open-world
In the open-world scenario the adversary monitors a small

number of pages and trains a classifier on traffic traces of
both monitored and non-monitored pages. Following the
approach described by Wang et al. [32], we assume the ad-
versary monitors four pages: google.com, facebook.com,
wikipedia.org and twitter.com and the rest of the pages
in the Alexa Top 100 URLs are not monitored. We train
a classifier using 36 traces for each of the Alexa Top 100
URLs, including the URLs of our monitored pages. To show
the accuracy of the classifier in a true open-world scenario,
we test it using four traces for each of the monitored sites
plus one trace for each of the sites ranging from Alexa rank
151 to 34,710. For the classification, we assume the attacker
is only interested in learning whether the user is visiting a
monitored page or not, and not the exact URL that the user
is visiting. did not train on.

The classifier W offers an accuracy over 90%, a true positive
rate (TPR) of 80% that is almost constant, and the false
positive rate (FPR) tends to 2.6% when we increase the size
of the world (Figure 6).

The base rate fallacy
Prior WF studies used accuracy-based metrics to measure
the success of the WF attack in the open-world. This ap-
proach however neglects the base rate or prior, that is the
probability of a user visiting a monitored page a priori. As
it has been pointed out recently within the Tor commu-
nity [25], this constitutes a bias in the evaluation of the WF
attack called the base rate fallacy. Despite reporting high
accuracies and low FPR when the prior is low the success of
the attack can be significantly lower.
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Figure 6: BDR in a uniformly distributed ∼35K open-world.

In contrast to prior work, we measure the success of the
attack in the open-world using the Bayesian detection rate
(BDR). The BDR is defined as the probability that a traffic
trace actually corresponds to a monitored webpage given
that the classifier recognized it as monitored.

Using the Bayes theorem, the BDR is expressed as

P (M | C) =
P (C |M) P (M)

P (M) P (C |M) + P (¬M) P (C | ¬M)
,



where M and C are the random variables of a webpage being
monitored and a webpage being detected by the classifier as
monitored respectively. We use the TPR as an approxima-
tion of P (C |M) and the FPR to estimate P (C | ¬M).

In Figure 6, we show the BDR with assuming a uniform

distribution of web pages (P (M) =
|Monitored|
|World| ) along with

the TPR and FPR of the classifier W for different sizes of the
world. We observe that the BDR tends to zero as the size
of the world increases. For a world of size 30K, which is a
rather small world compared to the total size of the Web, the
BDR is 0.4%. This means that there was a 0.4% probability
that the classifier made a correct classification, and 99.6%
of the times the adversary would wrongly conclude that the
user was accessing a monitored page.
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Figure 7: Evaluation of the BDR in a ∼35K open-world for
multiple values of the prior P (M). According to the ALAD
data set, P (M) = 0.18 for 4 popular domains (google.com,
facebook.com, twitter.com and wikipedia.org); P (M) = 0.03
for popular homepages and P (M) = 0.005 for non-popular
homepages (4 random pages from ALAD with Alexa rank
> 500).

Nevertheless, assuming a uniform distribution of pages
introduces a statistical bias because it underestimates the
probability of visiting popular pages. In order to give a
more accurate estimation of the prior we extracted statistics
about visits from the ALAD dataset. In particular, we mea-
sured frequency with which the users requested the URLs
of the four monitored pages and its domains. We obtained
P (M) = 0.1852 for domains and P (M) = 0.0352 for home-
pages. We found that in our case, where the attacker only
identifies home pages, the BDR tends to just 53.1% (Fig-
ure 7).

We believe that a real-world adversary would not mon-
itor homepages such as google.com or facebook.com. As a
more plausible WF attack we have in mind a nation state-
like adversary who is interested in identifying the access to
specific pages that are difficult to block, such as an entry in
a whistle-blower’s blog hosted in a different country. These
pages would presumably have a lower base rate than pages
listed in Alexa.

To investigate the consequences of a very low prior we
also calculated the BDR for monitoring a set of non-popular
pages. We counted the number of visits in ALAD for 4
random pages that have a rank higher than 500 in Alexa,
such as careerbuilder.com (rank 697) and cracked.com

(rank 658). As expected, with a prior of 0.005 the BDR is
much lower (marked with circles in Figure 7) and tending to

0.13%. Yet, note that these are just upper bounds because
these monitored pages appear in the Alexa list and might
be considered popular. We suspect that BDR for even more
unpopular pages would be so low that would render a WF
attack ineffective in this scenario.

User’s browsing habits

In this section, we study the performance of a classifier
that is trained on Alexa Top 100 sites and test it using real-
world user visited sites. The goal is to check how successful
an adversary, trained according to prior WF attacks, would
be to find suspected pages on a set of pages a real-world user
browsed.

We used the logs of three randomly chosen users from
the ALAD and randomly picked 100 URLs from each. We
crawled the URLs and collected data to feed the W classifier.
During classification we mapped the test URLs to their top
level domains. For example, dell.msn.com was mapped to
msn.com. We chose to do this to not to overwhelm the classi-
fier with false positives when it matches an inner page with
the homepage. The results, summarized in Table 9 show
a clear failure of the classifier in identifying the pages that
these users were browsing.

ALAD User TP FP
User 3 38/260 362/400
User 13 56/356 344/400
User 42 3/208 397/400

Table 9: TPR and FPR for each of the users using a classifier
trained on 36 traces from Alexa Top 100 sites and tested on
randomly chosen 100 sites visited by ALAD User 3, 13 and
42. Here, ntrain = 4, ntest = 1, Ttrain = 36, ttest = 4,
m = 10 and k = 100.

Note that the true positive rate is the number of correct
predictions over the number of predictions in which the page
can be found in Alexa. The false positive rate is calculated
as the number of misclassifications over the total number of
predictions.

One possible reason for low TPR is due to the effect of
inner pages. Inner pages are pages in the website that are
not the homepage. We distinguish between two types of
inner pages: (i) private, only accessible to the user through
authentication (e.g., pages in Facebook or email accounts),
and (ii), public, that is pages that are accessible for any
web user but that it is not the homepage of the site. Other
work has claimed that private inner pages do not matter
because the TBB cleans session storage and a user has to
load the login page after each session. However, we believe
it is common that users leave the TBB open and visit the
same inner page repeatedly within one single session. The
high FPR is because the supervised classifier cannot output
‘Unknown’ for pages that do not exist in the training set,
thus chooses to output a page in the training set that is the
closest to the test page.

5. CLASSIFY-VERIFY
In standard supervised learning, a classifier chooses at

least one class even when the target class is unavailable.
For example, in the open-world scenario when a classifier is



Figure 8: Estimated probability scores of the true positive
and false positive instances during the open-world experi-
ment (Section 4.8). Probability scores for the false positives
are much lower than that of true positives. With a thresh-
old ∼0.2 most of the false positives can be discarded without
reducing the true positive rate.

trained on web pages A, B and C and tested on page D,
it will choose a page from A, B and C, although the origi-
nal page (D) is absent. In the open-world experiment this
introduces many false positives.

During classification, a classifier can output its confidence
in the classification decision in terms of posterior probabil-
ity. Although standard SVM classifier (classifier W) does not
output probabilities, an additional sigmoid function can be
trained to map the SVM outputs into probabilities5. One
way to reduce the false positive rate is to inspect the prob-
abilities estimated by the classifier and reject the classi-
fier’s decision when the probabilities are lower than a certain
threshold. This is a form of Abstaining classification [5]. In
this paper, we use the modified “Classify-Verify” approach
as discussed by Stolerman et al. [27].

In the open-world experiment (Section 4.8), the probabil-
ity scores for true positive instances are higher than the false
positive instances (Figure 8). Note that, this was a multi-
class classification with 100 classes, so the random probabil-
ity score of an instance is 0.01.

The Classify-Verify approach adds an extra verification
step after the classification. In our case, the verification pro-
cess relies on a threshold that can be determined by training
(Algorithm 1). When a page (D) is tested using the clas-
sifier, it outputs the probability scores of D == Ai where
Ai ∈ A, sites in the training set. We use two verification
scores based on these estimated probabilities: the maximum
estimated probability, P1, and the difference between the
maximum probability and the second highest probability,
Diff = P1− P2. If the verification score of D is less than
the determined threshold, the classifier’s output will be re-
jected. Unlike Stolerman et al. [27], we maximize Fβ instead
of F1 to choose threshold by adjusting weights for precision
and recall. β ≤ 0.5 achieves fewer false positives at the cost
of true positives than β > 0.5. attacks.

5.1 Evaluation and result
We evaluate the Classify-Verify approach on the results

of the open-world and ALAD experiments. To determine
the threshold for a dataset, we use 10-fold cross-validation,
where a threshold is determined by using 90% of the data

5In LibSVM, this can be achieved by simply using the -b
option during training and testing [17].

Algorithm 1 Modified Classify-Verify

Input: Test page D, suspect pages A = A1, ..An and prob-
ability scores

Output: AD if AD ∈ A and ‘Unknown’ otherwise
. Train a classifier
CA → classifier trained on A
VA → verifier for A
. Calculate threshold for the verifier
t→ threshold maximizing Fβ score
. Test page D
Classify D
PD → Verification score
if PD >= t then

Accept the classifier’s output and return it
else

Reject the classifier’s output and return ‘Unknown’
end if

and then tested on the remaining 10%. For Fβ score, we
choose β = 0.5 as we want to give more priority to precision
than recall. We experimented with other β values and F0.5

finds the best threshold (0.21 for open-world) that gives low
false positives without reducing the TPR.

Our result shows that Classify-Verify reduces the number
of false positives significantly without reducing the TPR.
The new FPR after Classify-Verify is ∼ 0.68. In the largest
experiment (with ∼ 35K pages) the number of false positive
reduces from 647 to 235, which is over 63% drop. The FPR
can be reduced even further by sacrificing the TPR. The
threshold estimated using Diff = P1 − P2 and P1 both
perform similarly in our case.

Similarly for the users in ALAD, we determine the thresh-
old using cross-validation. The number of false positive
drops significantly (Table 10) over 50% for each of the three
users.

ALAD User TP FP New TP New FP
User 3 38/260 362/400 31.2/260 107.6/400
User 13 56/356 344/400 26.8/356 32/400
User 42 3/208 397/400 1.0/208 41.2/400

Table 10: Classify-Verify result on the ALAD users. The
number of FP drops by around 200.

The adversary can also use a pre-determined threshold
instead of computing it every time. For example, in the
open-world case if we had just chosen a threshold of 0.5 we
could have discarded even more false positives with a little
drop in true positives. Other more sophisticated approaches
can be applied to choose a threshold, for example measuring
the variance between intra- and inter-class instances. How-
ever, even after classify-verify the number false positive is
lower than before but still very high. The most difficult
cases are the high confidence false positives which indicate
the cases where the features from censored and uncensored
pages overlap.

We computed the BDR before and after applying the ver-
ification step. We used the estimation of the prior based on
the prevalence of the homepages of the monitored websites
in the ALAD dataset. The results show that the BDR dou-
bles when we use the Classify-Verify approach. However,
the BDR is still very low due to the exceptionally high FPR
in this specific setting. For this reason, we conclude that



Classify-Verify does not solve the issue completely but can
be useful to partially mitigate the impact of false positives.

6. MODELING THE ADVERSARY’S COST
In this section, we model the cost of an adversary to main-

tain a WF system and discuss the scenarios in which the
attack is most threatening. Current research considers only
one scenario where the adversary has the maximum infor-
mation about users. Even when the adversary has all possi-
ble information, collecting, maintaining and updating these
information can be costly. For example, our anecdotal expe-
rience shows that the traffic footprint of Google homepage
significantly changes due to different images (doodles) em-
bedded on the page.

A typical WF system requires 4 tasks: data collection,
training, testing and updating.

Data collection cost: At first the adversary needs to col-
lect data from the training pages. In order to maximize the
classifier accuracy, the adversary may want to train with
different localized versions of the same webpage and collect
these under different settings, e.g., different TBB versions,
user settings, entry guard configurations. If we denote the
number of training pages by n, and assume that on aver-
age webpages have m versions that are different enough to
reduce the classifier’s accuracy, the number of pages the ad-
versary needs to collect is D = n × m × i, where i is the
number of instances per page. We denote the data collec-
tion cost as col(D). This cost includes both network and
storage costs.

Training Cost: In the training phase an adversary needs
to train his classifier with the collected data. The training
cost includes the cost of measuring features F and training
a classifier C. So the cost of training the system once would
be train(D,F,C). If c denotes the cost of training with a
single instance of a traffic trace, then the cost of training the
system once would be train(D,F,C) = D × c.

Testing Cost: For testing a trace, the adversary needs to
collect test data T , extract features F and test using the
classifier C. Let v denote the number of monitored victims
and p denote the average number of pages accessed by each
victim per day. Then the amount of test data is T = v × p.
The total test cost is col(T ) + test(T, F,C).

Updating Cost: To maintain the performance of the clas-
sifier, the adversary needs to update the system over time.
For example the adversary might try to keep the accuracy
of the classifier above a certain threshold (e.g., 50%). The
updating costs include the cost of updating the data (D),
measuring the features (F ) and retraining the classifier (C),
which is denoted as update(D,F,C). If, on average, web-
pages change d day periods, the daily updating cost would

be update(D,F,C)
d

.

Then, the total cost of an adversary to maintain a WF sys-
tem is:

init(D,F,C, T ) = col(D)+ train(D,F,C)+col(T )+ test(T, F,C)

cost(D,F,C, T ) = init(D,F,C, T ) +
update(D,F,C)

d

To give a more concrete example, our experiment to measure
the effect of time to classifier accuracy, we found that after

d = 10 days the accuracy attained was under 50% and thus
the adversary would have needed to update his data. The
update(D,F,C)
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would not show the impossibility of a success-

ful WF attack, but it could show that to maintain such an
attack can be prohibitively expensive even for adversaries
with high level of resources.

The adversary could also have extra costs before the train-
ing and the data collection. For example, the attacker could
try to discover background information about the victim(s)
that can be used to increase the efficiency of the attack. He
could also try to discover properties about the Internet con-
nection of the user passively. However, in perspective of the
results of the previous sections, the amount of background
information required to mitigate the effect of noise in the
data can be much larger than previously expected. Further,
a question that lingers is to what extent, given such amount
of background information, the WF attack is still necessary.

7. CONCLUSION AND FUTURE WORK
In this paper we studied the practical feasibility of WF

attacks. We are not dismissing WF as a threat, but we sug-
gest that more attention should be paid to the practicality
of the scenarios in which these attacks are evaluated.

We studied a number of variables in isolation includ-
ing website variance over time, multitab browsing behav-
ior, TBB version, Internet connection, and the open world.
When each of these assumptions are violated, the accuracy
of the system drops significantly, and we have not exam-
ined in depth how the accuracy is impacted when multiple
assumptions are violated.

Our results showed that success of a WF adversary de-
pends on many factors such as temporal proximity of the
training and testing traces, TBB versions used for training
and testing, and users’ browsing habits, which are commonly
oversimplified in the WF models. Therefore, for most cases
it seems that the non-targeted attack is not feasible given
the sophistication level of current attacks.

There may be some exceptions in the case where a site of
interest, perhaps a whistleblowing site, is particularly unique
in its features and stable over time. Even the case of target-
ing a user is non-trivial, as these aspects of their behavior
must be observed a priori or guessed correctly for WF to
be a significant threat. Some users’ behavior may be more
susceptible to these attacks than others. In that case, the
adversary could also have enough background knowledge to
mount a more targeted attack and reduce the false positive
rate that we demonstrated empirically to be critical for the
success of the WF adversary.

We believe that further research on evaluating the com-
mon assumptions of the WF literature is important for as-
sessing the practicality and the efficacy of the WF attacks.
Future work in developing WF attacks against Tor should
also evaluate their proposed attacks in practical scenarios, so
that the Tor stakeholders and the research community have
a more realistic assessment of the threat they are facing.
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APPENDIX
A. LIST OF USED CRAWLS

Crawl Name Date Network Version Size Batches Accuracy control Std

140203 042843 2/3/2014 Leuven 3.5 100 10 77.08% ± 2.72%
140203 040706 2/3/2014 Leuven 2.4.7 Alpha 1 100 10 62.70% ± 2.80%
140209 162439 2/9/2014 New York 2.4.7 Alpha 1 100 10 67.53% ± 3.91%
140214 050040 2/14/2014 Singapore 3.5 100 10 78.70% ± 4.01%
140220 042351 2/20/2014 New York 2.4.7 Alpha 1 100 10 66.05% ± 3.42%
140325 115501 3/25/2014 New York 3.5.2.1 100 10 79.58% ± 2.45%
140329 194121 3/29/2014 Singapore 3.5.2.1 100 10 76.40% ± 5.99%
140329 191630 3/29/2014 Leuven 3.5 100 10 66.95% ± 2.87%
140418 145104 4/18/2014 Leuven 3.5 100 6 54.46% ± 21.15%
140426 021609 4/26/2014 Singapore 3.5 100 10 76.93% ± 3.86%
140427 140222 4/27/2014 Leuven 3.5 100 10 71.35% ± 9.09%
140506 224307 5/7/2014 New York 3.5 100 10 77.05% ± 6.29%
140508 144031 5/8/2014 New York 3.5 100 10 72.73% ± 3.18%
140329 184252 3/29/2014 Leuven 3.5 100 10 70.38% ± 11.72%
140210 201439 2/10/2014 Leuven 2.4.7 Alpha 1 100 10 66.88% ± 5.16%
140214 040009 2/14/2014 Leuven 3.5 100 5 64.40% ± 3.60%


