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Abstract. Chaum [1, 2] suggested a simple and efficient protocol aimed
at providing anonymity in the presence of an adversary watching all
communication links. Chaum’s protocol is known to be insecure. We
show that Chaum’s protocol becomes secure when the attack model is
relaxed and the adversary can control at most 99% of communication
links.
Our proof technique is markedly different than previous work. We estab-
lish a connection with information theory - a connection we believe is
useful also elsewhere, and which we believe supplies the correct language
to attack the problem. We introduce “obscurant networks” - networks
that can obscure the destination of each particular player, and we show
almost all executions of the protocol include such a network.
The security guarantee we supply is very strong. It shows the adversary
learns almost no information about any subset of players. Remarkably,
we show that this guarantee holds even if the adversary has a-priori
information about communication patters (e.g., people tend to speak
less with those who do not understand their language). We believe this
is an important issue in the real world and is a desirable property any
anonymous system should have.
Keywords: Anonymity, Privacy, Traffic Analysis, Unlinkability, Peer to
Peer networks.

1 Introduction

Chaum [1, 2] gave a general paradigmatic approach to anonymity. This includes
the observation that one can restrict attention to traffic analysis and ignore
message content, using encryption as the basic ingredient. These techniques are
currently known as onion routing [3, 4]. Chaum also suggested to solve the traf-
fic analysis problem even against an adversary who watches all communication
links, using a cascade of mixes. Chaum’s protocol is flawed and several attacks
are known today. In 1993, Rackoff and Simon [5] showed that if all participants
play at each time step, then these problems can be solved using secure compu-
tation.

The requirement that each participant sends a message every time step, puts
a large load burden on the system. Furthermore, if we think of a large peer to
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peer network, say the Internet, then it is inconceivable to require each participant
to play each round. Unfortunately, it is not difficult to see that this requirement
is necessary if the adversary controls all communication links. In this case, if
at each time step only a fraction of the participants send a message then the
well-known Mix flood attack [12] can isolate messages of any specific player. We
therefore set on the task of finding the strongest adversary model, under which
we can supply a provably anonymous system, and where the load burden on
each player is small.

The model we come up with is one where the adversary can control most,
but not all, of the communication links in the system, and the protocol we use is
a simplification of Chaum’s original protocol. We thus get a simple and efficient
protocol (both in terms of delay and load) that is provably anonymous against
an all powerful adversary that controls, say, at most 99% of communication links
(for formal definitions and statements see Sect. 2). A comparison of our protocol
with several other ones can be found in Table 1.

Table 1. Unlinkability protocols for a network of size N . Delay is how long it takes
for an anonymous message to arrive after it’s been initiated. Load is the number of
messages actually sent per anonymous message delivered.

Protocol
Attack Model:
Resources under
adversary control

Delay Load Simple? Attacks?

Chaum
O(1) fraction of nodes
All links

polylog(N) polylog(N) Yes Yes

RS93 [5]
O(1) fraction of nodes
All links

polylog(N) Õ(N) No —

This paper
O(1) fraction of nodes
O(1) fraction of links

polylog(N) polylog(N) Yes —

Our analysis is markedly different than previous work. Relaxing the attack
model to one where the adversary does not control a fraction of the communi-
cation links makes mixing throughout layers possible. One then has to analyze
the information the adversary gets in such a scenario.

Information theory provides a convenient language for expressing and dealing
with the question. The notations and definitions used throughout this paper
rely heavily on [17]. We show that anonymity can be defined in terms of the
mutual information between the actual communication that took place, and the
information the adversary knows about it. The mutual information function gives
an estimate on how much knowledge can be deduced on one random variable,
e.g., the matching of senders and receivers, from another partially correlated
variable, e.g., the traffic information gathered by an adversary. We also show
that this new definition is equivalent to previous definitions up to small factors.



Using information theory provides us with the language to attack the prob-
lem, but not the solution itself. For the proof, we show that with high probability,
the information the adversary is missing contains within it communication edges
that together form an “obscurant network” - a network that can obscure the des-
tination of each particular player. The exact definition of a protocol execution
containing a network is conceptually delicate, and the exact definition, given in
Definition 9, is one of the main technical contributions of the paper. We then
use information theory to show that this implies that the adversary learns al-
most no information about any subset of players. An alternate formulation of
this statement is that the information gleaned by the adversary on the actual
communications pattern is close to zero.

An added bonus is the treatment of unlinkability in a scenario where prior in-
formation is given to the adversary about the expected communication pattern.
We believe this is a rather important issue as in the real world communication
patterns are far from being random (e.g., The a-priori probability of a message
between two English speaking persons is much larger than that of a message
between an English speaking person and a Chinese speaking person). Neverthe-
less, it seems all previous works avoided the issue. Using our tools, and a nice
folding trick (and information theory again, of course), we show that no matter
what the prior information is, the adversary learns almost no information from
the communication it sees. We believe this result is rather strong and surprising,
and is a desirable property any anonymous system should have.

1.1 Related Work

Rackoff and Simon [5] describe a simple protocol secure against passive adver-
saries (that do not deviate from the given protocol) that is based on sorting
networks. Chaum [6] suggested the Dining-Cryptographer networks also secure
against such an adversary. Both systems have some extra requirements (e.g.,
DC require shared secret keys), most notable they both require all players to
participate at each stage.

Implementations of Chaum’s ideas appear in [13, 14, 4, 3, 8] and various at-
tacks are described in [12, 15]. Other methods for anonymity appear in [7, 10,
11].

2 What is Anonymity?

2.1 Our Attack Model

We have nodes and communication links in the system. We assume nodes hold
data items which are all of the same length. Some nodes and links are under
control of an adversary, others are not and are called honest. We distinguish
between two types of adversaries. An adversary may instruct the nodes and links
under his control to perform some arbitrary behavior based on the information
he gathered so far. An adaptive adversary may instruct nodes and links under



his control to initiate arbitrary new messages even not according to the protocol,
but may not instruct to delete them. A malicious adversary may instruct such
nodes to perform arbitrary behavior and in particular may delete messages. In
this paper we only deal with adaptive adversaries.

We assume that a public key infrastructure (PKI) and a public key directory
is widely available. The most significant assumption we make is that at least a
constant fraction of the communication links are honest1.

The delay of a protocol, also known as parallel time, is the number of rounds
it takes until a message reaches its destination. The load of a protocol is the
total number of messages transmitted throughout the protocol per anonymous
message delivered. It is important to realize that a communication network in
general, and the Internet in particular, may have a very large number N of
potential users, while only very few actual active players at any given time. In
particular, for an Internet protocol with only K << N active players, one would
hope for load that is Õ(K) and not Õ(N).

2.2 Defining unlinkability

Say there are M active players and they wish to communicate with M distinct
nodes2. Let π be the permutation that describes the communication pattern, i.e.,
player i communicates with node π(i), and let Π be the random variable whose
value is π. Now, let C be the random variable whose value is all the informa-
tion available to the adaptive adversary, gathered from adaptive communication
links and adaptive nodes. Specifically, C is a 0/1 matrix with rows indexed by
time steps an columns indexed by edges and with Ct,e being 1 iff there is some
communication on edge e in time t. Simon and Rackoff require that (Π, C) is
α–computationally close to some (Π, C ′) such that for all possible permutations
|π1, π2 |(C ′|Π = π1)− (C ′|Π = π2)|1 ≤ α. We now give an equivalent definition
using the mutual information function. We define:

Definition 1. Let A = {An}, B = {Bn} be two families of distributions. We say
d(A, B)P ≤ δ(n), if for every family of polynomial-size Boolean circuits {Tn},
for every large enough n, | Prx∈An [Tn(x) = 1]− Prx′∈Bn [Tn(x′) = 1] | ≤ δ(n).

The following definition contains three alternative definitions:

Definition 2. A family {(Π, C)} =
⋃

n(Πn, Cn) is α(n)–unlinkable if,

– d({(Π, C)}, {(Π,C ′)})P ≤ α(n) for some {(Π, C ′)} = ∪n(Πn, C ′n), and,
– For every n, fix Π = Πn, C ′ = C ′n and α = α(n). We require,

· (Def 1 [5]): ∀π1, π2 ∈ Π, |(C ′|Π = π1)− (C ′|Π = π2)|1 ≤ α.

1 Our results remain valid even when the adversary is allowed to eavesdrop every
honest link 99% of the time, with the caveat that on a random 1% of the time, he
fails to do so.

2 If the M nodes are not distinct, then our protocol w.h.p. makes them distinct by
adding a random identifier to each message.



· (Def 2): Prc∈C′ [ |(Π|C ′ = c)−Π|1 ≥ α ] ≤ α.
· (Def 3): I(Π : C ′) ≤ α.

We prove the three definitions are equivalent up to small multiplicative fac-
tors:

Lemma 3. Let {(Π, C)} =
⋃

n(Πn, Cn) be a family of arbitrary joint distribu-
tions, (Πn, Cn) is distributed over some domain Λn.

– If {(Π,C)} is γ(n)–unlinkable according to Def 1 (Def 2), then it is δ(n) =
O(log(|Λn|)

√
γ(n))–unlinkable according to Def 3. Conversely, If {(Π, C)}

is δ(n)–unlinkable according to Def 4, then it is γ(n) = (2 ln 2 · δ(n))1/3–
unlinkable according to Def 1 (Def 2).

The formal proof will appear in the full version of the paper.
We now specialize to our case, and we define when a protocol is unlinkable.

The thing to notice is that we allow the adversary a-priori knowledge on the
honest player’s communication pattern. Specifically this means that we do not
require the a-priori distribution ΠN (SN ) to be uniform. We say a protocol is
α(N)–unlinkable according to definition i, i ∈ {1, 2, 3}, if, for every N players,
every choice of subsets SN of honest players, and every distribution ΠN (SN ) on
their actual communication, which is the prior knowledge, if we let CN (SN ) be
the correlated random variable that contains the information known to the ad-
versary, then

⋃
N (ΠN (SN ), CN (SN )) is α(N)– unlinkable according to definition

i.
We say a protocol P is an efficient unlinkable protocol according to definition

i, if for every possible error function α(N) ≥ N−c,

– PN,α(N) is α(N)–unlinkable according to definition i, and
– PN,α(N) takes T (N) = O(poly(log( N

α(N) ))) rounds, and O(M · T (N)) mes-
sages, when M is the number of players who wish to send a message at a
time.

Because of the equivalence stated before, we have:

Theorem 4. A protocol P is efficiently unlinkable according to any one defini-
tion iff it is efficiently unlinkable according to all definitions.

Details of the proof will appear in the full version of the paper.

3 The Protocol

Our protocol is a variant of Chaum’s protocol. We describe our protocol in a
synchronous system. A wants to send a message a ∈ {0, 1}S to B and get back
an answer b ∈ {0, 1}S , where S is the length of data items in the system. A
picks T −1 random nodes v1, . . . , vT−1, and sets v0 = A, vT = B. A also picks T

random strings ri ∈ {0, 1}S , and zi ∈ {0, 1}`i where `i is a security parameter for
the encryption schemes Ei. We let E1, . . . , ET be the public encryption methods
of the T nodes. We denote



ai = Ei+1(ri+1, zi+1, vi+2, Ei+2(. . . ET−1(rT−1, zT−1, vT , ET (rT , a))) . . .)

for i = 0, . . . , T − 1.

The way from A to B : A sends (0, v0, z0, a0) to v1. In general, vi sends (i, vi,
zi, ai) to vi+1 where ai = Ei+1(ri+1, zi+1, vi+2, ai+1). vi+1 then decrypts ai,
and sends (i + 1, vi+1, zi+1, ai+1) to vi+2. It also records vi,vi+2,zi, zi+1 and
ri+1. vT = B recognizes it is the last on the path, and prepares an answer
b ∈ {0, 1}S to the message a it receives.

The way back : B = vT sends (vT , zT−1, bT ) to vT−1 where bT = b ⊕ rT .
In general, vi receives a message (vi+1, zi, bi+1). vi recognizes the value zi,
the link (vi−1, vi) that precedes (vi, vi+1) and the values ri, zi−1 that are
associated with it. It then sends (vi, zi−1, bi = bi+1 ⊕ ri) to vi−1. Finally,
A = v0 receives (v0, z0, b0 = b1 ⊕ r1) from v1. The value b0 ⊕ r1 ⊕ . . . rT is
the desired value b.

We prove:

Theorem 5. Assume the above protocol runs for T steps in a network with N
nodes,

(
N
2

)
communication links, some constant fraction of which are honest,

and T ≥ Ω(log(N) log2(N/α(N))). Then the protocol is α(N)–unlinkable.

The protocol can be adapted to the asynchronous setting as well, details to
appear in the full version of this paper.

4 The Proof

5 Proof sketch

Generally speaking, in order to prove that the above protocol is secure, a process
of structuring is needed to be done to the communication patterns, to allow for
easy analysis and calculations.

To perform this process a special communication network is constructed, an
“Obscurant Network” (See Sect. 5.1). Apart from the data flow properties of this
network that allows anonymity, this network has a highly static and structured
communication pattern, compared with the patterns created by our protocol.

In order to analyze the amount of data the adversary gathers from the pattern
created by our protocol, we show that this pattern has enough honest links within
it that together contain an “embedded” obscurant network. After describing
what an embedding is and an algorithm to find one in Sect. 5.2, we prove that
our protocol’s communication pattern contains, w.h.p., such an embedding in
Sect. 5.3 for the case of no-prior information.

Our proof makes use of another interesting technique. During most steps of
the analysis, information is purposely being revealed to the adversary regarding
communication on links that are not under its control. This classifies the links
in the network into two, ones where the adversary has full information of data



flow, and ones where the adversary has absolutely no information about the flow
of data. Showing both the existence of an embedding of an obscurant network as
well as telling all other irrelevant data to the adversary allow for a simple proof
in the case of no-prior information.

Prior information is dealt with in section 5.3. A folding trick is used to reveal
yet some more information to the adversary about the connection between infor-
mation flowing from the sources of the message and the information arriving at
the final destinations of messages. This trick literally folds the communication
pattern in half when observed from the adversary’s point of view, reducing the
analysis to the case of no-prior information, when the interesting layer of the
protocol is the middle layer of communications. We then show that the middle
layer does not convey enough information to the adversary, resulting in unlink-
ability. The result requires longer message paths in order to achieve a probable
embedding of an obscurant network.

5.1 Obscurant Networks

A network is a layered directed circuit with the same number of vertices on
each layer. We say a circuit is a crossover network, if every vertex has in-degree
and out-degree one or two. An example is depicted in Fig. 1. We think of the
following game: a pebble is put on some input vertex, say on the i’th vertex.
If the vertex out-degree is one, we follow that link. Otherwise, we follow each
of the crossover links with probability half. By the end of the game we get a
distribution Oi over the output elements. We say the network ε–obscures the
i’th input, if |Oi − UM | ≤ ε, when UM is the uniform distribution. We say a
network ε-obscures inputs, if it ε-obscures every input. We call networks that
obscure their inputs obscurant networks.

We now show an explicit construction of a simple shallow obscurant network
that has depth O((log(M) + log ε−1) log(M)) for M inputs.

Let Z be the largest power of two not larger than M . We use two compo-
nents: a butterfly network BZ , with comparators replaced with crossovers, and
a network over 2k elements and two layers with k crossovers connecting vertex
i in the first layer with both vertex i and vertex k + i (mod 2k) in the second
layer, for i = 1, . . . , 2k. We call this later network P2k. We distinguish between
two cases. If Z = M we put BZ on the Z inputs. Otherwise, M

2 < Z < M . For
the first level, we put BZ on the Z rightmost elements. For the second level, We
put BZ on the Z leftmost elements. For the third level, We put P2(M−Z) on the
2(M −Z) rightmost elements. For the fourth level, we put BZ on the Z leftmost
elements. We then iterate the third and fourth levels log(M)+ log ε−1 times (see
Fig. 1).

We claim:

Lemma 6. When using a depth of O((log(M) + log ε−1) log(M)), the network
is ε–obscurant.

Proof. If M = Z, then for every input vertex i spans a tree. It follows that
Oi = UM and the network is 0–obscurant.
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Fig. 1. An obscurant network for M = 7, Z = 4. Simple connections are often omitted.
The boxes with the grey background are B4 butterflies. The other boxed sub-circuit is
P6.

Suppose M
2 < Z < M . Let i be a starting vertex. Notice that BZ gives equal

weight to each of its Z outputs. When applying BZ on the right followed by
BZ on the left, all the Z leftmost elements have one weight, `0, while the rest
M − Z rightmost elements have the same (possibly different) weight, r0. One
can observe that this property is an invariant that remains valid throughout the
protocol, i.e.,

– The invariant: After applying the pair P2(M−Z) and BZ i times, i ≥ 0, the
Z leftmost elements all have weight li and the M −Z rightmost elements all
have weight ri.

– After applying P2(M−Z) of the i + 1’st pair, all the 2(M − Z) rightmost
elements have one weight ri+1 = (ri + li)/2 and all the remaining M −
2(M − Z) = 2Z −M = K, 1 ≤ K < Z, leftmost elements remain at weight
li.

– After applying BZ of the i + 1’st pair, all the Z leftmost elements have one
weight `i+1 = K·li+(Z−K)·ri+1

Z and all the M −Z rightmost elements remain
at weight ri+1.

Calculating, we see that |`i+1 − ri+1| < 1
2 |`i − ri|, which leads to the fact that

|`t − 1
M | ≤ (M−Z)

M 2−t. To conclude the proof we note that |O(t)
i − UM |1 ≤

2M ·|`t− 1
M | ≤ 2(M−Z)2−t. As M−Z < M/2 < M , we get that |O(t)

i −UM |1 ≤
M2−t ≤ ε, for t = log(M) + log ε−1.

ut



5.2 Finding Obscurant Networks in Protocol Executions

Say that M honest players start sending messages and that we have in mind an
obscurant, crossover network G over M inputs and of depth D. Our goal is to
show that if the M players run the protocol T steps, for some T large enough,
then the network G, in a sense, appears as a subgraph of the protocol execution
graph, which we call P . The precise notion of G appearing in P is somewhat
delicate and we explain it in detail soon.

The basic fact that we know about our system is that at least an f fraction of
the links are honest. The following combinatorial lemma asserts that no matter
which edges are honest, if we choose four vertices a, b, c, d at random from V ,
then there is a crossover structure on the four vertices with probability at least
f4.

Fact 7 ([16], Corollary 2.1) Let G = (V, E) be a graph and assume |E| ≥
f · (|V |2

)
. Then Pra,b,c,d∈V [ {(a, c), (a, d), (b, c), (b, d)} ⊆ E ] ≥ f4.

Good Embeddings We represent a crossover network G as G = (VG, £G, IG)
where VG is the set of DM vertices of G, £G is the set of all crossovers (a, b; c, d)
in G, and IG is the set of all simple links in G (i.e., network edges of G not
participating in any crossover). We represent a protocol P as P = (VP , TP , CP )
where VP is the set of TM vertices participating in the protocol, TP is the set
of all links carrying traffic in the execution of the protocol, and CP is the set of
all links that are under adversary control (whether used to carry traffic or not).

Definition 8. A function φ : VG × {0, 1} → VP is an embedding if:

– The mapping φ respects TP . I.e.,
• ∀e=(v,w)∈IG

(φ(v, 1), φ(w, 0)) ∈ TP .

• ∀(a,b;c,d)∈�G

∣∣∣∣
{

(φ(a, 1), φ(c, 0)), (φ(a, 1), φ(d, 0)),
(φ(b, 1), φ(c, 0)), (φ(b, 1), φ(d, 0))

}
∩ TP

∣∣∣∣ = 2.

– For every v ∈ VG, φ(v, 0) and φ(v, 1) are connected in TP .
– The adversary does not know any link in any crossover. I.e., for every

(v1, v2; w1, w2) ∈ £G and every i, j ∈ {1, 2}, (φ(vi, 1), φ(wj , 0)) 6∈ CP .

We define φP (£G) to be the image of £G under the embedding φ. I.e., the
set of all (u1, u2; u3, u4) ∈ V 4

P for which there exist (v1, v2; v3, v4) ∈ £G s.t.
φ(v1, 1) = u1, φ(v2, 1) = u2, φ(v3, 0) = u3 and φ(v4, 0) = u4.

A delicate point is that right now the embedding φ may depend on the actual
communication P that took place. We therefore add the requirement that φ is
independent of the communication that took place on the embedded copy of G.
Formally this takes the following form:

Definition 9. Let G be defined as before. Let P be a protocol (e.g., the protocol
of Sect. 3). An embedding strategy for the protocol, with ε error, is an algorithm
that given an execution P = (VP , TP , CP ) of the protocol, outputs a function
φP : VG × {0, 1} → VP such that:



– Prcoins of P [φP is an embedding] ≥ 1− ε, and,
– For every two protocol executions P and P ′ that use the same sets of vertices,

if TP ′ agrees with TP on all edges not participating in φP (£G) then φP =
φP ′ .

A Good Embedding Exists We prove:

Lemma 10. Let G be any network over M inputs and of depth D. Let us run
the protocol P of Sect. 3 for T = 2Dk steps. Then there is an embedding strategy
for P with ε = DM(1− f4)k error.

Proof. We first label each vertex v of G by v
(d)
i , where 0 ≤ d ≤ D is the

depth of v, and i comes from an arbitrary labelling of the d’th layer with labels
{1, . . . , M}, such that all edges in G are either of the simple form (v(d)

i , v
(d+1)
i )

or of the crossover form (v(d)
i , v

(d+1)
j ) where (v(d)

i , v
(d)
j ; v(d+1)

i , v
(d+1)
j ) ∈ £G.

Algorithm 11 (An algorithm for labelling VP and constructing φ : VG → VP )

Bottom layer : The algorithm labels all the vertices in the bottom layer of P

with u
(0)
i , where i ∈ {1, . . . , M} and the labels inside the layer are chosen

arbitrarily (say, by lexicographic order on the identity of the vertex). We
define φ(v(0)

i , 0) = u
(0)
i .

Odd layer : We reveal all communication on links going from a vertex in layer
2t to a vertex in layer 2t + 1, for every 0 ≤ t ≤ T

2 . For every revealed edge
(u(2t)

i , w) ∈ TP we label w with u
(2t+1)
i .

Even layer t = d · 2k + `, 0 ≤ ` < 2k :
First, if ` = 0 we set ok(i) = false for every i ∈ {1, . . . , M}. This tells us
that we still have to take care of all vertices in the d’th layer of G. Otherwise,
if ` ≥ 2 then for every i ∈ {1, . . . ,M} we do the following:

– If v
(d)
i belongs to a simple edge (v(d)

i , v
(d+1)
i ), we reveal the edge (u(t−1)

i , w)
of TP and we label w with u

(t)
i . Also, if ok(i) = false then set φ(v(d)

i , 1) =
u

(t−1)
i , φ(v(d+1)

i , 0) = u
(t)
i and ok(i) = true.

– Otherwise, v
(d)
i belongs to a crossover form (v(d)

i , v
(d)
j ; v(d+1)

i , v
(d+1)
j ) ∈

£G. Let w and z be the vertices such that (u(t−1)
i , w), (u(t−1)

j , z) ∈ TP .

If ok(i) = true or if one of the edges (u(t−1)
i , w), (u(t−1)

i , z), (u(t−1)
j , w)

or (u(t−1)
j , z) is in CP we reveal all the above four edges. We also label

w with u
(t)
i .

If, however, ok(i) = false and all these four edges are honest, we la-
bel {w, z} with the labels

{
u

(t)
i , u

(t)
j

}
in an arbitrary order (say, by the

natural order on i and j as numbers) and we set φ(v(d)
i , 1) = u

(t−1)
i ,

φ(v(d+1)
i , 0) = u

(t)
i and ok(i) = true. We also say, then, that we have

found the crossover (v(d)
i , v

(d)
j ; v(d+1)

i , v
(d+1)
j ) ∈ £G in P .



The first two conditions of Definition 8 hold directly from the way we choose
the embedding φ. Also, let us say that we find G in P if we find every crossover
of £G in P . Whenever this happens the third condition also holds, because we
then embed every crossover of G in VP in a clean way.

To see that Algorithm 11 is an embedding strategy, fix two executions P
and P ′ of the protocol that use the same sets of vertices, and that agree on all
communication over links not in φP (£G). As P and P ′ differ only on crossovers,
and the labelling of the vertices at the last layer of the crossover depends only
on a pre-determined order, the labelling in P is the same as in P ′. This means
that φP = φP ′ .

To complete the argument we show that with high probability (over the
random coins of the protocol P from Sect. 3) we find all crossovers of £G in P .

Claim. For every crossover (v(d)
i , v

(d)
j ; v(d+1)

i , v
(d+1)
j ) ∈ £G, the probability we

do not find it in an execution P of the protocol from Sect. 3 is at most (1−f4)k.

Proof. Fix (v(d)
i , v

(d)
j ; v(d+1)

i , v
(d+1)
j ) ∈ £G. For every time step t = 2kd + `,

2 ≤ ` < 2k, look at the vertices u
(t−1)
i , u

(t−1)
j , u

(t)
i , u

(t)
j . The vertices in each path

are chosen at random, and we reveal all edges going from even layers to odd
layers. Thus, the vertices in the t− 1 and t’th layers are chosen at random and
independent of history. Specifically, the above four vertices are chosen at random,
and independent of history. By Fact 7 we find a crossover with probability at
least f4. As different steps are independent, the probability we do not find a
crossover in any of the k attempts is at most (1− f4)k. ut

Using the union bound we see that:

Claim. Let G be any crossover network with M inputs and depth D. Let us run
the protocol of Sect. 3 with M honest nodes and for T = 2Dk steps. Let P be
the resulting network. Then Pr [G does not appear in P ] ≤ DM(1− f4)k.

ut

5.3 The Unlinkability Proof

Our goal now is to prove that our protocol is unlinkable. We first deal with the
no prior knowledge case, i.e., when the a-priori distribution is uniform. We then
show in section how the no prior knowledge case implies the general case.

We show that given knowledge of how players 1, . . . , j behave, the adversary
does not know how player j + 1 behaves. For every j = 1, . . . , M , we display a
different obscurant network Gj , over M − j players, in the actual execution of
the protocol.

Suppose there are M honest players sending messages in a network with N
players, and let α(N) > N−c. Let G = GM be an ε-obscurant network over M
inputs and of depth D = O(log(M

ε ) log(M)). Suppose we run the protocol for
T = 2Dk steps. We would like to set values for ε and k such that we receive
α(N)− unlinkability with our protocol.

We define the following random variables:



X : X contains all the actual information generated throughout the protocol.
I.e., for every link (v(t)

i , v
(t+1)
j ) it contains the information whether there was

traffic on that link or not.
Π : Π(i) contains the actual destination of the i’th honest player. The random

variable Π = Π(1) . . . Π(M) contains the actual communication pattern
between the M honest players and the M destinations.

C ′ : C ′ contains all the traffic information the adversary knows. I.e., for every
dishonest link (v(t)

i , v
(t+1)
j ) it contains the information whether there was

traffic on that link during the t’th step or not.
Z : X and C ′ together determine whether the process described in section 5.2

finds the crossover network G in the protocol or not. If we do, we let Z contain
all the information available on links that do not belong to φX,C′(£G). I.e.,
for every link (v(t)

i , v
(t+1)
j ) that does not belong to φX,C′(£G), it contains

the information as to whether there was traffic on that link during the t’th
step or not.

Notice that Z is correlated with X, Π and C ′. Nevertheless, the chain rule for
information ([17], Theorem 2.5.2, page 22) tells us that I(Π : C ′) ≤ I(Π : C ′, Z).
It would therefore suffice to show that I(Π : C ′, Z) ≤ α(N). Now comes the crux
of the argument, and we do it in detail.

Suppose the embedding strategy finds G in an execution P of the protocol.
By Definition 9, all executions P ′ of the protocol that use the same set of vertices
and agree with P outside φP (£G) result in the same embedding. As all edges
revealed are outside φP (£G), the random variable Z has the same value in
both cases. Also, C ′ has the same value in both cases as φP (£G) contains only
honest edges. Thus, the adversary can not distinguish P from P ′. As the a-priori
probabilities of the executions P and P ′ are the same, both are equally likely
from the adversary point of view. I.e., any possible communication pattern on
φP (£G) is equally likely.

Now, G is an ε-obscurant network. From the adversary point of view, any
crossover is resolved to be identity with probability half, and a switch with
probability half (because all possible communication patterns are equally likely),
and so by the obscurant network properties |(Π(1) | C ′, Z)− UM |1 ≤ ε.

Using lemma 10 it follows that Prc′,z[|(Π(1)|C ′ = c′, Z = z) − UM |1 ≥ ε] ≤
DM(1− f4)k = ε, when k is set to log 1

1−f4
(DM

ε ).
We now continue with standard manipulations. From Lemma 3 we see that

I(Π(1) : C ′, Z) ≤ log(|ΛN |) ·
√

ε = O(TM2
√

ε). Taking ε = α6(N)
M12 , we receive

I(Π(1) : C ′, Z) ≤ O(α(N)
M ).

Using the chain rule for information, I(C ′ : Π) =
I(C ′ : Π(1)) + I(C ′ : Π(2)|Π(1)) + . . . + I(C ′ : Π(M)|Π(1), . . . ,Π(M − 1)).

We can bound the j’th term I(C ′ : Π(j) |Π(j−1), . . . , Π(1)) in this equation,
by adding to the adversary the knowledge of the communication paths of the first
j−1 players. We then see that we get a new game with only M−j+1 players. Our
analysis from before shows that I(C ′, Z : Π(j) |Π(j−1), . . . , Π(1)) ≤ O(α(N)

M ).
We therefore conclude that I(C ′ : Π) ≤ M ·O(α(N)

M ) ≤ α(N) as desired.



The Prior Information Case In the general case the adversary knows that
the actual communication that took place has a-priori distribution Π. The ad-
versary may use this knowledge to deduce things about the next to last layer,
the one preceding it and so forth. Thus, the information the adversary sees flows
both from bottom up (because the adversary knows who initiates messages, and
follows whatever links he can), and from top down (because the adversary has
some partial information about who sent who a message, and he follows links
from top down). We note that we would like to deal with priors that have ex-
tremely low probability in a uniform world. E.g., the adversary might know that
residents of Kandahar tend to communicate with residents of Karachi.

The way we show our protocol works is by concentrating on the middle layer.
This is intuitively natural because the adversary knows the permutation at the
beginning, and has partial information about the final permutation (given by the
prior), but the middle layer seems to be masked by the random choices made
throughout the protocol. We let Π(T/2) be the random variable whose value is
the actual permutation that took place between the first and middle layer. To
show that even in the prior knowledge scenario the adversary does not learn
much about the middle layer we give the adversary additional information so as
to make the information flow only in one direction. Details follow.

Lemma 12. Let Π be an arbitrary distribution. Suppose we run the protocol for
T = Ω(log(M) log2(M

α )) steps. Then I(C ′ : Π(T/2)) ≤ α.

Proof. We say a vertex v(t) from the t’th layer is associated with a vertex w(T−t)

from the T − t’th layer, if the message that v(t) forwards eventually arrives at
w(T−t). We also say the link (w, v) is associated with the link (v′, w′) if w is
associated with w′, and v is associated with v′.

We give the adversary the extra knowledge about which vertex at level t is
associated with which vertex at level T − t, for every 0 ≤ t ≤ T

2 . We see that
under this additional information the adversary gets to see M players playing
our protocol for T/2 steps, and where a link (v(t), v(t+1)) is honest iff both the
link (v(t), v(t+1)) and its associated link are honest.

Thus, the only difference from the case of no prior knowledge is that now
the probability each link is honest is f2 rather than f . We therefore can use
the theorem for no prior-knowledge and conclude that I(C ′ : Π(T/2)) ≤ α as
desired. ut

We now show that it must be the case that the adversary did not gain much
information about the last layer. I.e.,

Lemma 13. I(C ′ : Π(T )) ≤ I(C ′ : Π(T/2)).

Proof. We represent the random variable C ′ that contains the communication
the adversary sees as C ′ = (C1, C2) where C1 is the communication seen through-
out the first T/2 steps, and C2 is the communication seen throughout the last
T/2 steps.



I(Π(T ) : C1, C2) = I(Π(T ) : C2) + I(Π(T ) : C1 | C2) =
I(Π(T ) : C1 | C2) ≤ I(Π(T/2) : C1 | C2) ≤ I(Π(T/2) : C1, C2)

The first equality and the last inequality are applications of the chain rule
for information.

To see the second equality, notice that (C2|Π(T ) = π) is the same distribution
for all permutations π that are valid values of Π(T ). This is because we can
think of the protocol as if the players first pick π ∈ Π(T ), then pick the top
T − 1 levels at random, and then complete the first layer to implement π. Thus,
I(Π(T ) : C2) = 0.

The crux of the argument is the first inequality. For it, we use the data-
processing inequality ([17], Theorem 2.8.1, page 32) and the probabilistic func-
tion f(σ, c2) that given σ ∈ Π(T/2) and c2 ∈ C2 chooses the permutation π with
probability Pr(Π(T ) = π | Π(T/2) = σ∧C2 = c2). The important thing to notice
is that it suffices to know σ and c2 alone to know the value of f(σ, c2). ut

6 Open Problems

We show an efficient protocol (both in terms of delay and load) secure against
adaptive adversaries. However, in our opinion, this is only the beginning of a
systematic study of unlinkability in anonymous networks. We mention a few
interesting open problems:

– Our work (and most previous work) assume a complete communication net-
work. In reality, the network is a low-degree graph. Simple calculations show
that an adaptive adversary can easily isolate all messages that come from
any specific user. Is there a reasonable relaxed attack model, that allows
anonymous communication?

– Our work (and most previous work) assume the communication network
(i.e., the vertices in the network, and which vertices and edges are honest) is
fixed in advance. Can one design a protocol that handles dynamic changes
in the topology (users joining and leaving) of the system?

– Our work (and most previous work) assumes each participant has full knowl-
edge of the network topology, users’ keys, etc. This does not conform, for
example, with the fully distributed nature of peer to peer systems. Can we
do better in this respect, and still retain efficiency and provable security?

– Extending the protocol to malicious adversaries.
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