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Abstract associated with individual nodes are suppressed. Such sup-
pression is often misinterpreted as removal of “personally
Operators of online social networks are increasingly identifiable information” (PlIl), even though PIl may incled
sharing potentially sensitive information about users andmuch more than names and identifiers (see the discussion
their relationships with advertisers, application deyatos, in Appendix B). For example, the EU privacy directive
and data-mining researchers. Privacy is typically proeett defines “personal data” as “any information relating to an
by anonymization, i.e., removing names, addresses, etc. identified or identifiable natural person [...]; an idenbf&a
We present a framework for analyzing privacy andperson is one who can be identified, directly or indirectly,
anonymity in social networks and develop a newin particular by reference to an identification number or to
re-identification algorithm targeting anonymized social- one or more factors specific to his physical, physiological,
network graphs. To demonstrate its effectiveness on realmental, economic, cultural or social identity” [Eur95].

world networks, we show that a third of the users who Anonymity has been unquestioningly interpreted as equiv-
can be verified to have accounts on both Twitter, a populaglent to privacy in several high-profile cases of data skyarin
microblogging service, and Flickr, an online photo-sharin After a New York court ruling ordering Google to hand
site, can be re-identified in the anonymous Twitter graphover viewing data of over 100 million YouTube users to
with only a 12% error rate. Viacom and the subsequent protests from privacy advocates,
Our de-anonymization algorithm is based purely on thea revised agreement was struck under which Google would
network topology, does not require creation of a largeanonymize the data before handing it over [Swe08]. The
number of dummy “sybil” nodes, is robust to noise and all CEO of NebuAd, a U.S. company that offers targeted
existing defenses, and works even when the overlap betweg@vertising based on browsing histories gathered from,ISPs
the target network and the adversary’s auxiliary infornoati dismissed privacy concerns by Saying that “We don’t have

is small. any raw data on the identifiable individual. Everything is
_ anonymous” [Cli08]. Phorm, a U.K. company with a similar
1. Introduction business model, aims to collect the data on Web-surfing

habits of 70% of British broadband users; the only privacy

Social networks have been studied for a century [SimO8protection is that user identities are mapped to random
and are a staple of research in disciplines such as epidentifiers [Sto08]. In social networks, too, user anonymit
demiology [Bai75], sociology [TM69], [Gra83], [Bon87], has been used as the answer to all privacy concerns (see
economics [Gra85], and many others [Dun92], [BA99], Section 2).
[HC69]. The recent proliferation of online social networks
such as MySpace, Facebook, Twitter, and so on has attract U i o
attention of computer scientists, as well [KKWO8]. easibility .of large-scale, passive de-anonymizatione#l+

Even in the few online networks that are completelyWorld social networks. o .
open, there is a disconnect between users’ willingness to First, we survey the current state of data sharing in social
share information and their reaction to unintended partie§€tWorks, the intended purpose of each type of sharing, the
viewing or using this information [Car07]. Most operators "esulting privacy risks, and the wide availability of auadl
thus provide at least some privacy controls. Many onlindnformation which can aid the attacker in de-anonymization

r contributions. This is the first paper to demonstrate

and virtually all offline networkse.g, telephone calls, email ~ Second, we formally define privacy in social networks and
and instant messagestc) restrict access to the information relate it to node anonymity. We identify several categooies
about individual members and their relationships. attacks, differentiated by attackers’ resources and iail

Network owners often share this information with ad- information. We also give a methodology for measuring the
vertising partners and other third parties. Such sharing i€xtent of privacy breaches in social networks, which is an
the foundation of the business case for many online sociainteresting problem in its own right.
network operators. Some networks are even published for re- Third, we develop a generic re-identification algorithm for
search purposes. To alleviate privacy concerns, the nkswvor anonymized social networks. The algorithm uses only the
are anonymizedi.e, names and demographic information network structure, does not make aaypriori assumptions



about membership overlap between multiple networks, and For online social networks, the data can be collected
defeats all known defenses. by crawling either via an API, or “screen-scraping.d,

Fourth, we give a concrete demonstration of how our deMislove et al. crawled Flickr, YouTube, LiveJournal, and
anonymization algorithm works by applying it to Flickr and Orkut [MMG*07]; anonymized graphs are available by
Twitter, two large, real-world online social networks. We request only). We stress that even when obtained from public
show that a third of the users who are verifiable members ofvebsites, this kind of information—if publicly released—
both Flickr and Twittet can be recognized in the completely still presents privacy risks because it helps attackers who
anonymous Twitter graph with only 12% error rate, evenlack resources for massive crawls. In some online networks,
though the overlap in the relationships for these members isuch as LiveJournal and the Experience Project, user ofile
less than 15%! and relationship data are public, but many users maintain

Sharing of anonymized social-network data is widesprea@seudonymous profiles. From the attacker’s perspectiige, th
and the auxiliary information needed for our attack isis the same as publishing the anonymized network.

commonly available. We argue that our work calls for aadyertising. With the emergence of concrete evidence that
substantial re-evaluation of business practices suriognd gqcial-network data makes commerce much more prof-

the sharing of social-network data. itable [RDO2], [SWB"08], network operators are increas-
ingly sharing their graphs with advertising partners to
2. State of the Union enable better social targeting of advertisements. For ex-

ample, Facebook explicitly says that users’ profiles may

The attacks described in this paper target anonymized?® Shared for the purpose of personalizing advertisements
sanitized versions of social networks, using partial aasgl @nd_promotions, as long as the individual is not explic-
information about a subset of their members. To show thatlly identified [Fac07]. Both Facebook and MySpace al-
both anonymized networks and auxiliary information arelow advertisers to use friends’ profile data for ad target-
widely available, we survey real-world examples of social-INg [D’A07]. Social-network-driven advertising has been
network data sharing, most of which involve releasingre ~ Pursued by many startups [Eld08a], [Mor08] and even

information than needed for our attack. Google [RTZSHO03], typically relying on anonymity to pre-

) o _ vent privacy breaches [And08], [EId08b], [O'N08].
Academic and government data-mining.Social networks

used for published data-mining research include the mob”eThi_rd-party applications. The_ ”meer of third-party appli-
phone call graphs of, respectively, 7 million [O$66], cat|_0ns on F_acebook alone is in the tens of 'Fhousano_ls and
3 milion [NGD'06], and 2.5 million [LBd08] cus- r§p|dly growing [RumO7]. The data from multiple apphcg-.
tomers, as well as the land-line phone graph of 2.1 milions can be aggregated and used for targeted advertising

lion Hungarian users [KBCLO7]. Corporations like AT&T, (€:9, as done by SocialMedia [Rec08]). As the notion
whose own database of 1.9 trillion phone calls goes bacRf social networking as a feature rather than des_tlnauon
decades [Hay06], have in-house research facilities, pdgkes hoId_[Ar_1d07], many other netwprks are trying to
smaller operators must share their graphs with externdiiact application developers; on the Ning platform, wihic
researchers. Phone-call networks are also commonly uséd®Mms over 275,000 networks, each network can be con-
to detect illicit activity such as calling fraud [Wil99] aridr  Sidered a third-party application. The data given to third-

national security purposes, such as identifying the contan party appI_icat_ions is usually not anonymized, even thqugh
and-control structures of terrorist cells by their idiossatic most applications would be able to function on anonymized

sub-network topologies [Hay06]. A number of companiespr?l_fri:_ez [FEOS]. licati h K d of
sell data-mining solutions to governments for this pur- Ir _-party_ app |cat_|o_ns ave a poor trac recorc o
pose [Sog08]. respecting privacy p(_)llCles. For example,_a security hole i
Sociologists, epidemiologists, and health-care profesf?h F%QGE[ESOK apphcgtmn dgvel?)rigd bﬁ’. SI'?et’ Inc% ?xposed
sionals collect data about geographic, friendship, family € birthdays, gender, and relationship status ot stranger

and sexual networks to study disease propagation aninUding Facebook execuf[ives, [a}nd] the wife of Google
risk. For example, the Add Health dataset includes theco—founder Larry Page” [Mil08]. WldgetLr_alboratory, one of
sexual-relationship network of almost 1,000 students o he most popular develop“ers for_the Ning platform, was

banned permanently after “gathering credentials fromsuser

an anonymous Midwestern high school as part of a de . . .
ymou 1w '9 b and otherwise creating havoc on Ning networks” [Arr08].

tailed survey on adolescent health [add08b]. While thel_h ¢ itis | ant t derstand what lici
Add Health project takes a relatively enlightened stance eretore, 1t 1S important to understand what a malicious

: nthird-party application can learn about members of a social

anonymized form [BMS04]. network, even if it obtains the data in an anonymized form.

Aggregation. Aggregation of information from multi-
1. At the time of our crawl; details are in Section 6. ple social networks, facilitated by projects such as



OpenlID [ope08], DataPortability [dat08], the “social ghép attributes such as node degree can be highly senséige,
project [FRO7], and various microformats [mic08], poten-in a sexual network [BMSO04]. Existing defenses focus on
tially presents a greater threat to individual privacy thannames and other identifiers, but basic de-anonymization onl
one-time data releases. Existing aggregators includedrrie reveals that someone belongs to the network, which is hardly
Feed, MyBlogLog, Jaiku (recently acquired by Google), andsensitive. As we show in the rest of this paper, however, it
Plaxo; the latter even provides an open-source “sociallgrapcan be used as a vehicle for more serious attacks on privacy,
crawler” [Pla07]. Aggregated networks are an excellentincluding disclosure of sensitive attributes.

source of auxiliary information for our attacks. De-anonymization attacks.Backstromet al. present two

Other data-release scenariosWellNet is a health-care co- active attacks on edge privacy in anonymized social net-
ordination service which enables employers to monitor thavorks [BDK07]. These active attacks fundamentally assume
social network in real time in order to track employees’ med-that the adversary is able to modify the network prior to
ical and pharmacy activity [Med08]. The data is anonymizedits release: “an adversary chooses an arbitrary set of users
In “friend-to-friend networking,” a peer-to-peer file- whose privacy it wishes to violate, creates a small number
sharing network is overlaid on social links [PCTO04] in of new user accounts with edges to these targeted users, and
order to defeat censor nodes such as the RIAA. Nodesreates a pattern of links among the new accounts with the
are pseudonymous and communication is encrypted. Sinagoal of making it stand out in the anonymized graph struc-
traffic is typically not anonymized at the network level, the ture.” Both attacks involve creatin@(log N) new “sybil”
logs that can be obtained, for example, by subpoenaing theodes {V is the total number of nodes), whose outgoing
ISP are essentially anonymized social-network graphs.  edges help re-identify quadratically as many existing sode
Finally, consider photographs published online without Active attacks are difficult to stage on a large scale.
identifying information. The accuracy of face recognition First, they are restricted to online social networks (OSNs)
can be improved substantially by exploiting the fact thatcreating thousands of fake nodes in a phone-call or real-lif
users who appear together in photographs are likely t@etwork is prohibitively expensive or impossible. Even in
be neighbors in the social network [SZD08]. Since mostOSNs, many operators.g, Facebook) check the uniqueness
online photographs appear in a social-network contexy, theof email addresses and deploy other methods for verifying
effectively represent an anonymized graph, and techniquegccuracy of supplied information, making creation of adarg
developed in this paper can help in large-scale facial renumber of dummy nodes relatively difficult.

identification. Second, the attacker has little control over the edges
incomingto the nodes he creates. Because most legitimate
3. Related Work users will have no reason to link back to the sybil nodes, a

subgraph with no incoming edges but many outgoing edges

Privacy properties. A social network consists of nodes, Will stand out. As we show below, this may enable the net-
edges, and information associated with each node an@ork operator to recognize that the network has been com-
edge. The existence of an edge between two nodes caomised by a sybil attack. There are also other techniques
be sensitive: for instance, in a sexual-relationship netwo for identifying sybil attacks in social networks [YGKX08],
with gender information attached to nodes [BMS04] itincluding methods for spammer detection deployed by OSNs
can reveal sexual orientatioBdge privacywas considered that allow unidirectional edges [Sch08].
in [KMNXO08], [BDKO7]. In most online social networks, We carried out an experiment to verify the claim that
however, edges are public by default, and few users changdentification of subgraphs consisting primarily of sybil
the default settings [GAHO5]. nodes is difficult in real-world social networks. The data
While the mere presence of an edge may not be sensitivéQr this experiment was the graph of LiveJournal obtained
edge attributes may reveal more informatieng( a single  from Misloveet al.[MMG *07], crawled in late 2006. Itis a
phone call vs. a pattern of calls indicative of a business oflirected graph with 5.3 million nodes and 77 million edges.
romantic relationship). For example, phone-call pattarhs Except for the time of the crawl, this graph is similar to that
the disgraced NBA referee Tom Donaghy have been usedsed in [BDKO7].
in the investigation [Win08]. In online networks such as The cut-based attack of [BDKO7] creates 7-node sub-
LiveJournal, there is much variability in the semantics ofgraphs containing a Hamiltonian path. In contrast to the
edge relationships [FRGO7]. observation in [BDKO07] that every possible 7-node subgraph
The attributes attached to nodes, such as the user’s iwontaining a Hamiltonian path occurs in the LiveJournal
terests, are usually far more sensitive. Social Security-nu graph, there are no subgraphs in the LiveJournal graph that
bers can be predicted from Facebook profiles with highehave these two properties and, furthermore, do not have any
accuracy than random guessing [GAHO5]; see [CBLO08] forincoming edges. We conclude that active attacks are easy
other privacy breaches based on profile data. Even implicito detect if real users never link back to sybil nodes. More



sophisticated sybil-detection techniques may work as longants in order to perform privacy-preserving social-netwo
as only a small percentage of real users link back to sybianalysis [FG06]. Kerschbaum and Schaad additionally en-
nodes. able participants to track their position in the anonymous
The third limitation of active attacks is the fact that many graph [KS08].
OSNs require a link to be mutual before the information is
made available in any form. Therefore, assuming that real Several papers proposed variantskefnonymity for so-
users do not link back to dummy users, the links from fakecial networks. For example, Hagt al. require nodes to be
nodes to real ones do not show up in the network. automorphically equivalent [HMJD7], i.e., there must exist
We conclude that large-scale active attacks requiring creautomorphisms of the graph that map each abdes to one
ation of tens of thousands of sybil nodes are unlikely to beanother. This is an extremely strong structural requirémen
feasible. Active attacks can still be useful in identifyiog  which is achieved only against severely restricted adver-
creating a small set of “seeds” to serve as a starting poirgaries: in one model, the attacker only has information fibou
for large-scalepassiveprivacy breaches. We develop such degree sequences around his target node; in another,| partia
an attack in Section 5.2. knowledge of the structure in the vicinity of the target. The
Backstromet al. also describe passive attacks, in whichtechnique appears to work only if the average degree is low,
a small coalition of users discover their location in theruling out most online social networks.
anonymized graph by utilizing the knowledge of the network

structure around them. This attack is realistic, but again, |jy and Terzi consider node re-identification assuming
only works on a small scale: the colluding users can onlynat the adversary’s auxiliary information consists onfy o
compromise the privacy of some of the users who are alreadyode degrees [LT08]. There is no clear motivation for this
their friends. restriction. Campan and Truta propose metrics for the infor
By contrast, our attack does not require creation of a largenation loss caused by edge addition and deletion and apply
number of sybil nodes, and—as shown by our experimentg-anonymity to node attributes as well as neighborhood
on real-world online social networks—can be successfullystructure [CT08]. Zhou and Pei assume that the adversary
deployed on a very large scale. knows the exact-neighborhood of the target node [ZP08].

DefensesExisting privacy protection mechanisms for social 1h€ anonymization algorithm attempts to make this 1-
neighborhood isomorphic té¢ — 1 other 1-neighborhoods

networks are only effective against very restricted adver-" i ]
saries and have been evaluated on small, simulated network@ €dge addition. The experiments are performed on an
whose characteristics are different from real social netaio  Undirected network with average degree 4 (an order of

For example, Zheleva and Getoor give several strategigd@dnitude lower than that in real social networkso) and
for preventing link re-identification [ZG07], but the model @lréady require increasing the number of edges by 6%. The

ignores auxiliary information that may be available to theNUmber of edges to be added and the computational effort
attacker. are likely to rise sharply with the average degree.

An unusual attempt to prevent network operators from
capitalizing on user-provided data appears in [GTF08]. It The fundamental problem with-anonymity is that it is
involves scrambling the profiles when they are sent to thé Syntactic property which may not provide any privacy
server and client-side unscrambling when a friend’s profileeven when satisfiece(g, if all & isomorphic neighborhoods
is viewed. Building and running such a system involveshave the same value of some sensitive attributes). Cryciall
constant reverse-engineering of communication between thall of these defenses impose arbitrary restrictions on the
client and the server. Further, all of a user’s friends need tinformation available to the adversary and make arbitrary
use the system, flatly contradicting the claim of incremlenta@ssumptions about the properties of the social network.
deployability. A similar idea appears in [LBO8], with a
more sound architecture based on a server-side Facebookwe argue that the auxiliary information which is likely to
application. Both approaches severely cripple sociakogt  be available to the attacker ggobal in nature €.g, another
functionality because almost any non-trivial action othersocial network with partially overlapping membership) and
than viewing another user’s profile or messages requires theot restricted to the neighborhood of a single node. In the
server to manipulate the data in a way which is not possibleest of this paper, we show how this information, even
under encryption. if very noisy, can be used for large-scale re-identification

Anonymity is a popular approach to protecting privacy. Existing models fail to capture self-reinforcing, feedkac
Felt and Evans propose a system where applications sdmsed attacks, in which re-identification of some nodes
randomized tokens representing users instead of actual ideprovides the attacker with more auxiliary information, ki
tifiers [FEO8]. Frikken and Golle show how to compute is then used for further re-identification. Development of a
an anonymous graph from pieces held by different particiimodel for such attacks is our primary contribution.



4. Model and Definitions connection between preventing node re-identification and i
tuitive “privacy.” In terms of entropy, most of the inforniai

4.1. Social network in the released graph resides in the edges, and this is what

our de-anonymization algorithm will exploit.

The data release process may involve perturbation or
sanitization that changes the graph structure in some way
to make re-identification attacks harder. As we argued
in Section 3, deterministic methods that attempt to make

a set of attributesy for each edge inE (for instance, - t nodes look identical d i K listi
type of relationship). The model is agnostic as to whethefil erent nodes ook idenfical do not work on reanstic
networks. Other defenses are based on injecting random

attributes accurately reflect real-world identities or (see e into th h struct Th ¢ 2
Appendix C). We treat attributes as atomic values from g'0Is€ Into e graph Structure. 1he most promising one
discrete domain; this is important for our formal definitimin is link prediction[LNKO3], which produces plausible fake

privacy breach (Definition 3 below). Real-valued attritzute edges by exploiting the fact that edges in social-network

must be discretized. Where specified, we will also represerﬁraphs_ha\(e a high clustering c_:ogfﬁment_. _(We_ stress th_ht d
edges as attributes i taking values in{0, 1}. prediction is far beyond the existing sanitization teclueis)

In addition to the explicit attributes, some privacy p@ei which mostly rely on simple removal of identifiers.) The

may be concerned with implicit attributeise, properties of experiments in Section 6.2 show that our algorithm is robust

a node or an edge that are based purely on the graph strutc(:) injected noise, whether resulting from link prediction o

ture. For example, node degree can be a sensitive implicﬁm' I_n Append|x E, we discuss how to measure the amount
attribute. Implicit attributes may be leaked without déscl of noise introduced by pert_u_rbayon.

ing any explicit attributes. For example, if the adversary r we moc_jel the data sanitization and release process as
identifies a subset of nodes in an anonymized graph, nonfé)llows' First, select a subset of nodégan C V, and

of which are adjacent, he learns the degrees of these nodggisets)fsa” % )g’ ysar:j € Y of nOdE anddedgg atttr)ibutef]
without breaking edge privacy. Which implicit attributes to be released. Second, compute the induced subgraph on

should be protected depends on the specific network. Vsan. For_S|mpI|C|ty, we do not model more cqmplex crltgrla
for releasing edgee.g, based on edge attributes. Third,

remove some edges and add fake edges. Rel8ggg =
4.2. Data release (Vsan; Esan, {X (v)Vv € Vsan, X € Asan},{Y(e)Ve €
Esan,Y € Ysan}), i.e, a sanitized subset of nodes and
Our model of the data release process focuses on whaidges with the corresponding attributes.
types of data are released and how the data is sanitized (if
at all), and abstracts away from the procedural distinstion
such as whether the data is available in bulk or obtaineél's' Threat model
by crawling the network. As discussed in Section 2, social-

network data are routinely released to advertisers, applic ed and bl itized network hs t
tion developers, and researchers. Advertisers are oftemgi anonymized and possioly sanitized network graphs to com-

access to the entire graph in a (presumably) anonymize'a‘erc_ial partners and academic rese_archers. Therefore, we
form and a limited number of relevant attributes for eachtake it for granted that the attacker will have access to such

node. Application developers, in current practice, getasc data. The main question we answer in the rest of this paper

to a subgraph via user opt-in and most or all of the attributeéS: can sensitive informqtion abogt specific individuals be
within this subgraph. This typically includes the ideniify ~ cXracted from anonymized social-network graphs?
attributes, even if they are not essential for the appbcedi  Attack scenarios. Attackers fall into different categories
functionality [FEO8]. Researchers may receive the entiralepending on their capabilities and goals. The strongest
graph or a subgraph (up to the discretion of the networladversary is a government-level agency interestegiabal
owner) and a limited set of non-identifying attributes. surveillance Such an adversary can be assumed to already
“Anonymization” is modeled by publishing only a subset have access to a large auxiliary netwdiyx (see below).
of attributes. Unlike naive approaches suctkamonymity, His objective is large-scale collection of detailed infam
we do not distinguish identifying and non-identifying at- tion about as many individuals as possible. This involves
tributes (any attribute can be identifying if it happensaggregating the anonymous netwaSkgn with Sgyx by
to be known to the adversary as part of his auxiliaryrecognizing nodes that correspond to the same individuals.
information). Suppressed attributes are not limited to the Another attack scenario involvesbusive marketingA
demographic quasi-identifiei@ priori; we simply assume commercial enterprise, especially one specializing in be-
that the published attributes by themselves are insufficierhavioral ad targeting [Top08], [YuO8], can easily obtain an
for re-identification. In Section 4.4, we explain the (iredit) = anonymized social-network graph from the network operator

A social networkS consists of (1) a directed graph
G = (V,E), and (2) a set of attribute& for each node
in V (for instance, name, telephone numbetc) and

As described in Section 2, network owners release



for advertising purposes. As described in Sections 1 and 2Ysgn corresponds to the same entity as a given node from
anonymity is often misinterpreted as privacy. If an unethic Sgx. Therefore, easy availability of auxiliary information
company were able to de-anonymize the graph using puldoes not directly imply that anonymized social networks are
licly available data, it could engage in abusive marketingvulnerable to privacy breaches.
aimed at specific individual®hishing and spamminglso Our formal model of the attacker includes both aggre-
gain from social-network de-anonymization. Using dethile gate auxiliary information (large-scale information from
information about the victim gleaned from his or her de-other data sources and social networks whose membership
anonymized social-network profile, a phisher or a spammeoverlaps with the target network) and individual auxiliary
will be able to craft a highly individualized, believable information (identifiable details about a small number of in
message (cf. [JJIMO7]). dividuals from the target network and possibly relatiopshi
Yet another category of attacks involvéargeted de- between them). In the model, we consider edge relationship
anonymizationof specific individuals by stalkers, investi- to be a binary attribute i3 and all edge attribute¥ € Y
gators, nosy colleagues, employers, or neighbors. In thitp be defined ovel’* instead of E. If (u,v) ¢ E, then
scenario, the attacker has detailed contextual informatioY [u,v] =L VY €.

about a single individual, which may include some of heraggregate auxiliary information. It is essential that the
attributes, a feW Of her SOCial re|ati0nShipS, membershi%ttacker’s aux”iary information may include re|atiormi

in other networks, and so on. The objective is to USepetween entities. Therefore, we modgh,x as a graph
this information to recognize the victim's node in the Gaux = {Vaux, Faux} and a set of probability distribu-
anonymized network and to learn sensitive information &boutjgns Auxx andAuxy, one for each attribute of every node
her, including all of her social relationships in that netiwo Vaux and each attribute of every edge Fyyx. These
distributions represent the adversary’s (imperfect) Khow
edge of the corresponding attribute value. For example,
the adversary may be 80% certain that an edge between
two nodes is a “friendship” and 20% that it is a mere
“contact.” Since we treat edges themselves as attributiss, t

Modeling the attacker. We assume that in addition to the
anonymized, sanitized target netwdikgn, the attacker also
has access to differentnetwork Sayx whose membership
partially overlaps withS. The assumption that the attacker
possesses such an auxiliary network is very realistict,Firs ; ;
it may be possible to extrackayy directly from S: for also captures the attacker’'s uncertain knowledge about the

example, parts of some online networks can be automaticall§Xistence of individual edges. This model works well in
crawled, or a malicious third-party application can previd practice, although it does not capture some types of auxilia

information about the subgraph of users who installednformat'on’ S};'Ch as “node, is connected to either node
it. Second, the attacker may collude with an operator of’2» Of nodev3.. . .
a different network whose membership overlaps with For an attributeX of a nodev (respectively, attribut&@”
Third, the attacker may take advantage of several ongoingj an edger), we represent DAUXLY, v] (resp., Aux[Y’, e])
aggregation projects (see Section 2). The intent of thesk® attacke_rs prior prqbablllw _d|str|but|om.t{., (_1|str|l?ut|on
projects is benign, but they facilitate the creation of adVen by his auxiliary information) of the attribute’s valy
global auxiliary network combining bits and pieces of pabli The setAuxx (resp.,Auxy) can be tho“ght of as a union
information about individuals and their relationshipsrfro  Of AUX[X; o] (resp.,Aux[Y’ ¢]) over all attributes and nodes
multiple sources. Fourth, government-level aggregatushy ~ ("€SP-, edges). o _
as intelligence and law enforcement agencies, can collect A99regate auxiliary information is used in the the “prop-
data via surveillance and court-authorized searches.izepe 29ation” stage of our de-anonymization algorithm (Sec-
ing on the type of the attacker, the nodes of his auxiliarytion 5)
network may be a subset, a superset, or overlap with thodadividual auxiliary information (information about
of the target network. seeds)We also assume that the attacker possesses detailed

We emphasize that even with access to a substantidformation about a very smalhumber of members of the
auxiliary networkSgx, de-anonymizing the target network target networkS. We assume that the attacker can determine
Ssan is a highly non-trivial task. First, the overlap between if these members are also present in his auxiliary network
the two networks may not be large. For the entities whoSaux (.9, by matching usernames and other contextual
are members of botia x and.S, some social relationships information). The privacy question is whether this infor-
may be preserved.e., if two nodes are connected Byyx, mation about a handful of members S8fcan be used, in
the corresponding nodes i are also connected with a combination withSayy, to learn sensitive information about
non-negligible probability, but many of the relationships other members ofS.
in each network are unique to that network. Even if the - _ _ : .

2. Negligible relative to the size &f. For example, in our experiments,

same entity belong_s to both networks' it is not immediatelye fing that between 30 and 150 seeds are suficient for neswith 10°
clear how torecognizethat a certain anonymous node from to 106 members.



It is not difficult to collect such data about a small numberlong as there are any sensitive attributes at all attach#teto
of nodes. If the attacker is already a useiSothe knows all  nodes, since the algorithm re-labels the sensitive atergou
details about his own node and its neighbors [KMNXO08], with identifying information.

[SzZD08]. Some networks permit manual access to profiles We defineground truthto be a mapping:. between the
even if large-scale crawling is restricte@.g, Facebook nodesiayx of the attacker’s auxiliary network and the nodes
allows viewing of information about “friends” of any mem- Vggn of the target network. Intuitively, a pair of nodes are
ber by default.) Some users may make their details publiecnapped to each other if they belong to the same “entity”
even in networks that keep them private by default. Thesee Appendix C). lfus(v) takes the special valug, then
attacker may even pay a handful of users for informatiorthere is no mapping for node (e.g, if v was not released
about themselves and their friends [LKG8], or learn it as part ofVsgn). Further,uc need not map every node in
from compromised computers or stolen mobile phones. FoFsagn. This is important because the overlap betw&gan
example, the stored log of phone calls provides auxiliaryand Vayx may be relatively small. We do assume that the
information for de-anonymizing the phone-call graph. With mapping is 1-1j.e, an entity has at most one node in each
an active attackd.g, [BDKO07]), the attacker may create network, as discussed in Appendix C.

fake nodes and edges Hwith features that will be easy to Node re-identificatioror re-labeling refers to finding a
recognize in the anonymized version $f such as a cligue mappingu between a node ifVgyx and a node inVsan.

or an almost-clique. Since large-scale active attacks arlntuitively, Ggux is a labeled graph an@san is unlabeled.
unlikely to be feasible (see Section 3), we restrict thelie ro Node re-identification succeeds on a naggix € Vaux if

to collecting individual auxiliary information as a presor  u(v) = pug(v), and fails otherwise. The latter includes the
to the main, passive attack. case thatu(v) =L, ug(v) #L and vice versa. Informally,

Individual auxiliary information is used in the the “seed re-identification is recognizing correctly that a given sod
identification” stage of our de-anonymization algorithm in the anonymized network belongs to the same entity as a

(Section 5) node in the attacker’s auxiliary network.
Definition 1 (Re-identification algorithm)A node re-
4.4. Breaching privacy identification algorithm takes as inpStan and Saux and

produces a probabilistic mapping Vsan x (Vaux U {L

The notion of what should be considered private variest) — [0;1], where fi(vaux, vsan) is the probability that
from network to network and even from individual to indi- vaux Maps tousan. o _
vidual within the network. To keep our model independent Ve give such an algorithm in Section 5. Observe that the
of the semantics of a particular network, we treatgtigacy ~ 2/90rithm outputs, for each node ifaux, @ set of candidate
policy as a syntactic, exogenous labeling that specifies foP0des inVsan and a probability distribution over those
every node attribute, edge, and edge attribute whether R0des reflecting the attacker's imperfect knowledge of the
should be public or private. Formally, it is a function "€-identification mapping. _
PP: X UY x E — {pub, priv}. In Appendix D, we discuss We now d_eflne t_he cI:_;tss c_>f_ adversarles who attempt
the challenges of rigorously defining privacy policies. to breach_ privacy via re-identification. _After construgtin

In this paper, we take an “operational” approach to social{h® mapping, the adversary updates his knowledge of the
network privacy by focusing solely on node re-identificatio 2itributes of Saux using the attribute values isan.
First, it is unclear how to give a meaningful definition of SPecifically, he can use the probability distribution ovee t

social-network privacy that does not make some assumptiorﬁandidate nodes to derive a distribution over the attribute
about the attackers strategy and yet yields meaningqualueS associated with these nodes. His success is measured

results on real-world data. Second, all currently knownPY the precision of his posterior knowledge of the attrisute
privacy-breaching and privacy-protection algorithmsuec ~ Definition 2 (Mapping adversary)A mapping adversary
on node re-identification. Even edge inference, in ordeto b c0rresponding to a probabilistic mappipgoutputs a prob-

considered a meaningful privacy breach, must include tearr@Pility distribution calculated as follows:

ing some identifying information about the endpoints and

thus implies node re-identification. Third, while anonyynit ZvéVsan,X[v]:m 1(vaux; v)

is by no means sufficient for privagyit is clearly necessary. AdVLX, vaux, ] =
A re-identification algorithm that breaks anonymity is thus

guaranteed to violate any reasonable definition of privasy, Adv[Y, ugux; vaux; ¥ =

, Aluaux walvgux-v)

2 vevegn X [ol#L H(vaux; v)

u,vevsan Y [u,v]=

3. For example, suppose that the attacker can map a nolig i to

a small set of nodes iVsgn which all have the same value for some uvevggnYluvl# L Alugux )i (vaux-)
sensitive attribute. Anonymity is preserved (he does notkwhich of the B h ili h d b b h of
nodes corresponds to the target node), yet he still leamwdlue of his ecause the auxiliary graph need not be a subgraph o

target's sensitive attribute. the target graph, the mapping may not be complete, and the



mapping adversary’s posterior knowlediydyv of an attribute  singletons should not affect the performance of any de-
value is only defined for nodagx that have actually been anonymization algorithm.
mapped to nodes in the target graph, at least one of which This is not merely hypothetical. In many online networks,
has a non-null value for this attribute. Formalkdv is  the majority of nodes show little or no observable activity
defined if there is a non-zero number of nodes Vsgn after account creation. Restricting one’s attention togilaat
such thati(vayx, v) > 0 and X [v] #.L. Edge attributes are connected component does not solve the problem, either,
treated similarly. because extraneous nodes with degree 1 instead of 0 would
The probability of a given node having a particular have essentially the same (false) impact on naively medsur
attribute value can be computed in other waggy, by  performance.
looking only at the most likely mapping. This does not make Instead, we assign a weight to each affected node in
a significant difference in practice. proportion to its importance in the network. Importance
We say that privacy ofsgn is compromised if, for some is a subjective notion, but can be approximated by node
attribute X which takes valuer in Ssgn and is designated centrality, which is a well-studied concept in sociology
as “private” by the privacy policy, the adversary’s beliedt  that only recently came to the attention of computer
X[vaux] = z increases by more thafy, which is a pre- scientists [HKRZ08], [CCHO08], [MAF08], [AKMO08],
specified privacy parameter. For simplicity, we assume thaftKKWO08].
the privacy policyPP is global,i.e. the attribute is either There are three groups of centrality measures: local,
public, or private for all nodes (respectively, edges). &lor eigenvalue-based and distance-based. Local methods such a
granular policies are discussed in Appendix D. degree centrality consider only the neighbors of the node.
Definition 3 (Privacy breach)for nodesugux, vaux € Eigenvalue methods also consider the centrality of each
Vaux, let ua(uaux) = usan and pug(vaux) = vsan- We  neighbor, resulting in a convergent recursive computation
say that the privacy afggn is breached w.r.t. adversafydv ~ Distance-based measures consider path lengths from a node

and privacy parametey if to different points in the network. A well-known eigenvalue

(a) for some attributeX such that PP[X] = priv, based measure was proposed by Bonacich in [Bon87],
Adv[X,vaux, ] — Aux[X,vaux,x] > ¢ where x =  while [HRO5] presents a textbook treatment of centrality.

Xlvaux], or We find that the decision to use a centrality measure at
(b) for some attribute” such thatPP[Y] = priv, Adv[Y, all, as opposed to a naive metric such as the raw fraction
uaux, vaux, ¥] — AuX[Y, uaux, vaux, ¥] > 6 wherey =  of nodes de-anonymized, is much more important than the
Y [uaux, vaux]- actual choice of the measure. We therefore use the simplest

Definition 3 should be viewed as a meta-definition or apossible measure, degree centrality, where each node is
template, and must be carefully adapted to each instance @feighted in proportion to its degree. In a directed graph,
the re-identification attack and each concrete attributés T we use the sum of in-degree and out-degree.
involves subjective judgment. For example, did a privacy There is an additional methodological issue. For a mapped
breach occur if the the attacker’'s confidence increased fgpair of nodes, should we use the centrality score from the
some attributes and decreased for others? Learning commotarget graph or the auxiliary graph? It is helpful to go back
sense knowledge from the sanitized network (for exampleto the pathological example that we used to demonstrate the
that all nodes have fewer thaf00 neighbors) does not in- inadequacy of fraction-based metrics. If either of the sode
tuitively constitute a privacy breach, even though it $&tss  in the mapped pair is a singleton, then the de-anonymization
Definition 3 for the “node degree” attribute. Such common-algorithm clearly has no hope of finding that pair. Therefore
sense knowledge must be included in the attackAdg.  we compute the centrality in both graphs and take the
Then learning it from the sanitized graph does not constitutminimum of the two. We believe that this formulation

a privacy breach. captures most closely the spirit of the main question we are
answering in this paper: “what proportion of entities theg a
4.5. Measuring success of an attack active in a social network and for which non-trivial auxifa

information is available can be re-identified?”

While it is tempting to quantify de-anonymization of  Given a probabilistic mapping, we say that a (concrete)
social networks in terms of the fraction of nodes affectedmapping issampledfrom j if for eachu, u(u) is sampled
this results in a fairly meaningless metric. Consider theaccording tog(u, .).
following thought experiment. Given a netwotk= (V| E), Definition 4 (Success of de-anonymizatiohgt
imagine the networkG’ consisting of G augmented with Vmap ed = 1v € Vaux : pc(v) #L1}. The success rate
|V| singleton nodes. Re-identification fails on the singletonf a c;)e—anonymization algorithm outputting a probabiisti
because there is no edge information associated with thermappingi, w.r.t. a centrality measure, is the probability
and, therefore, the naive metric returns half the value orhat . sampled fromi maps a node to ug(v) if v is
G’ as it does onG. Intuitively, however, the presence of selected according to:



which are present both in the auxiliary and the target graphs

Zvevmapped PR[u(v) = pa(v)]v(v) It is sufficient to know the degree of each of these nodes and
D 0) the number of common neighbors for each pair of nodes.
”evmapped The seed-finding algorithm takes as inputs (1) the target
The error rate is the probability thap, maps a node to ~ 9raph, (2)k seed nclzdes in the auxiliary graph, (3node-
any node other thapg (v): degree values, (4];) pairs of common-neighbor counts,
and (5) error parameter The algorithm searches the target
PR LA graph for a uniqué-clique with matching (within a factor of
Z“e"mapped lalv) #L Aulv) # e ()] (v) 1+ ¢) node degrees and common-neighbor counts. If found,
Svev v(v the algorithm maps the nodes in the clique to the corre-
mapped sponding nodes in the auxiliary graph; otherwise, failgre i

The probability is taken over the inherent randomness ofeported.
the de-anonymization algorithm as well as the sampling of While this brute-force search is exponential in in
1 from fi. Note that the error rate includes the possibility practice this turns out not to be a problem. First, if the degr
that ue(v) =L andpu(v) #L. is bounded by, then the complexity i€)(nd*~!). Second,

The above measure only gives a lower bound on privacyhe running time is heavily input-dependent, and the inputs
breach because privacy can be violated without complete devith high running time turn out to produce a large number
anonymization. Therefore, if the goal is to protect privacy of matches. Terminating the algorithm as soon as more than
it is not enough to show that this measure is low. It is alsoone match is found greatly decreases the running time.
necessary to show that Definition 3 is not satisfied. Observe,
for example, that simply creatinfgcopies of the graph tech- 5.2. Propagation
nically prevents de-anonymization and even satisfiesenaiv
syntactic definitions such d@sanonymity, while completely The propagation algorithm takes as input two graphs
violating any reasonable definition of privacy. G1 = (Vi,Eq) and Gy = (Va, E) and a partial “seed”

In the other direction, however, breaking Definition 4 for mapping us between the two. It outputs a mapping
a large fraction of nodes—as our algorithm of Section 50ne may consider probabilistic mappings, but we found it
does—is sufficient to break privacy via Definition 3, as longsimpler to focus on deterministic 1-1 mappings/; — V.
some trivial conditions are met: at least one private atteb Intuitively, the algorithm finds new mappings using the
is released as part otsgn, and the adversary possessestopological structure of the network and the feedback from
little or no auxiliary information about this attribute. previously constructed mappings. It is robust to mild mod-

ifications of the topology such as those introduced by
5. De-anonymization sanitization. At each iteration, the algorithm starts witle
accumulated list of mapped pairs betwégrandVs. It picks

Our re-identification algorithm runs in two stages. First,an arbitrary unmapped nodein V; and computes a score
the attacker identifies a small number of “seed” nodes whictior each unmapped node in V,, equal to the number of
are present both in the anonymous target graph and theeighbors ofu that have been mapped to neighbors off
attacker’s auxiliary graph, and maps them to each otheithe strength of the match (see below) is above a threshold,
The main, propagation stage is a self-reinforcing process ithe mapping between andwv is added to the list, and the
which the seed mapping is extended to new nodes using onlyext iteration starts. There are a few additional detaild an
the topology of the network, and the new mapping is fedheuristics that we describe below.
back to the algorithm. The eventual result is a large mapping Eccentricity. Eccentricity is a heuristic defined in [NS08]
between subgraphs of the auxiliary and target network# the context of de-anonymizing databases. It measures how
which re-identifies all mapped nodes in the latter. much an item in a seX “stands out” from the rest, and is
defined as

max(X) — maxz(X)
o(X)

While algorithms for seed identification are not our pri- wheremax andmaxs denote the highest and second highest
mary technical contribution, they are a key step in enabling/alues, respectively, and denotes the standard deviation.
our overall algorithm to succeed. Here we describe one pos- Our algorithm measures the eccentricity of the set of map-
sible seed identification algorithm. The attacks in [BDKO7] ping scores (between a single nodejrand each unmapped
can also be considered seed identification algorithms. Waode inv;) and rejects the match if the eccentricity score is
briefly discuss alternatives at the end of Section 6.1. below a threshold.

We assume that the attacker’s individual auxiliary infor- Edge directionality. Recall that we are dealing with
mation (see Section 4.3) consists of a cliquekohodes directed graphs. To compute the mapping score between a

5.1. Seed identification



pair of nodesu andv, the algorithm computes two scores— Complexity. Ignoring revisiting nodes and reverse matches,
the first based only on the incoming edgesuoéndv, and  the complexity of the algorithm i©(|E;|d2), whereds is

the second based only on the outgoing edges. These scor@dound on the degree of the nodeslin To see this, let
are then summed. tpart D€ the partial mapping computed at any stage of the

Node degreesThe mapping scores as described above ar@lgorithm. For eachi € Vi and eactw adjacent tou such
biased in favor of nodes with high degrees. To compensatthatv € domain(x,a.+), the algorithm examines each of the
for this bias, the score of each node is divided by the squarB€ighbors ofu,..+(v), giving an upper bound oft; |ds.
root of its degree. The resemblance to cosine simitaigy ~~ Assuming that a node is revisited only if the number of
not superficial: the rationale is the same. already-mapped neighbors of the node has increased by at

Revisiting nodes.At the early stages of the algorithm, '€8St1, we getabound 6f(|E1|d1d2), whered, is a bound

there are few mappings to work with, and therefore the® the degree of the nodes In. Finally, taking reverse
algorithm makes more errors. As the algorithm progressedN@Ppings into account, we g&X((|E: | + |Ez|)d1da)-

the number of mapped nodes increases and the error rate )

goes down. Thus the need to revisit already mapped node® EXperiments

the mapping computed when revisiting a node may be

different because of the new mappings that have become We used data from three large online social networks in
available. our experiments. The first graph is the “follow” relationshi

Reverse match.The algorithm is completely agnostic on the Twitter microblogging service, which we crawled in

about the semantics of the two graphs. It does not mattel‘r”lte 2007. The second graph is the “contact” relationships

i . L on Flickr, a photo-sharing service, which we crawled in late
whetherc, is the target graph and is the auxiliary graph, 2007/early 2008. Both services have APIs that expose a
or vice versa. Each time a nodemaps tov, the mapping :

scores are computed with the input graphs switched: If mandatoryusername field, and optional fieldsiame and

U LT . location. The latter is represented as free-form text. The final
gets mapped back to, the mapping is retained; otherwise, . o ) ) .
it is rejected. graph is the “friend” relationships on the LiveJournal blog

) ) ) _ ging service; we obtained it from the authors of [MMG7].
The following pseudocode describes the algorithm intpge narameters of the three graphs are summarized below.
detail. theta is a parameter that controls the tradeoff, computing the average degree, the degree of a node is

between the yield and the accuracy. counted as the sum of its in- and out-degrees. Further detail
function propagationStep(lgraph, rgraph, mapping) abOUt the Cra.W“ng process can be found |n Append|x F
for Inode in Igraph.nodes:
orscr;orez[\r|1r:)d§]raf gac\’tcissr:ores(lgraph, rgraph, mapping, Ino de) Network NOdeS Edges AV. Deg
if ici Inode]) < theta: i -
Tode = (lok nod. o fuagh odes where Twitter 224K | 8.5M 37.7
scores[Inode][node] = max(scores[inode])) =
Flickr 3.3M 53M 32.2
scores[rnode] = matchScores(rgraph, Igraph, invert(mapp ing), rnode) -
if eccentricity(scores[mode]) < theta: continue LlVeJOurnal 53M 77M 293

reverse_match = (pick node from Igraph.nodes where
scores[rnode][node] = max(scores[rnode]))
if reverse_match != Inode:
continue

6.1. Seed identification

mapping[lnode] = rnode

function matchScores(lgraph, rgraph, mapping, Inode)

To demonstrate feasibility of seed identification, we ran
the algorithm of Section 5.1 with the LiveJournal graph as it

initialize scores = [0 for rnode in rgraph.nodes]

for (Inbr, Inode) in Igraph.edges:

if Inbr ot in mapping: continue target. Recall from Section 4.3 that the auxiliary inforioat
br = ing[Inb .

for (mbr, thode) in rgrapheciges: needed to create seed mappings comes from the users of
if rnode in mapping.image: continue -
scores{mode] += 1 / mode.in_degree * 0.5 the target network. Therefore, we can evaluate feasilulity

for (inode, Inbr) in Igraph.edges: seed identification simply by measuring how much auxiliary

if Inbr not in mapping: continue A A B A . . .

mbr = mapping[inbr] information is needed to identify a unique node in the

for (rnode, rnbr) in rgraph.edges: . . . .
it mode in mapping.image: continue target graph. We emphasize that our main de-anonymization

scores[rnode] += 1 / rnode.out_degree ~ 0.5

algorithm needs only a handful of such nodes.
For simplicity, we assume that the attacker only has access
to the undirected graph, where an edge is included only if
it is symmetrical in the original graph. Thismderestimates
 oropagatonSiep(iraph, rgraph, seed_mapping) the re-identification rate, because the attacker would have
more information if directionality of edges were considkre
We synthetically generate auxiliary information for seed
4. Thecosine similarity measurbetween two setsX andY” is defined  identification starting from randomly samplediques To

. . _ |XnY] . "
when neither is emptycos(X, ) = —7===x. sample a clique of sizk, we start from a random node and,

return scores
function eccentricity(items)

return (max(items) - max2(items)) / std_dev(items)




100 - gorithm is that it achieves “viral,” self-reinforcing, -

90 scale re-identification regardless of the number of seeds,
80 - as long as the latter is above a (low) threshold. To study
70 | this behavior, we carried out an experiments on pairs of
50 4 subgraphs, over 100,000 nodes each, of a real-world social

network. In each experiment, one of the subgraphs was used
as the auxiliary information, the other as the target. The
graphs were atrtificially perturbed by adding different leve
of noise to achieve various degrees of edge overlap.
Perturbation strategy. Given a real network grapty =
(V,E), our goal is to sample subset§, V> of V' such
that V; and V, have an overlap ofyy. Overlap is mea-
sured in terms of the Jaccard Coefficient, which is de-
Error parameter fined for two setsX andY if one of them is non-empty:
JC(X,Y) = KB}‘CI Thus, if each of two sets shares
half its members with the other, the overlap %s We
simply partitionV' randomly into three subseis,, Vg, Vo

of size =2V |V, ay |V, 152 |V|, respectively, and set

at every stage, randomly pick a node which is adjacent td1 = VaU Vg andV, = Vp U Ve. o _

all the nodes picked so far. If there is no such node, we start YWe use one subgraph as the auxiliary information and

over. the other as the anonymous target graph. As mentioned
This method does not sample uniformly from all the in Section 2, we believe that introducing noise via edge

cliques in the graph; the distribution of selected nodes igleletions and additions is the only realistic method of

much more equitable. If we samplekaclique uniformly, perturbing the edges. Our goal is to simulate the effect of

it is susceptible to anomalies in the graph that make th@erturbation on the target graph as follows (Procedure A):

result meaningless. If the graph has a large clique, or even « Derive E’ from E by adding edges.

a large dense subgraph, then almost eveglique sampled ~ « Derive E” from E’ by randomly deleting edges.

will belong to this large clique or subgraph. « ProjectE andE” onV; andVa, respectively, to obtain
Given a clique (specifically, d-clique), we assume that E; and E.

the attacker knows the degrees of these 4 nodes as well asThe best way to add edges is to use link prediction, which

the number of common neighbors of each of the 6 pairswill result in plausible fake edges. Instead of choosing a

The auxiliary information may be imprecise, and the searctspecific link prediction algorithm, we perform the follovgin

algorithm treats a-clique in the target graph as a match as(Procedure B):

long as each degree and common-neighbor count matches, pmake two copies of£ and independently delete edges

50 A
40 4
30
20
10

Percentage re-identified

0 2% 10% 20%

Figure 1. Seed identification

within a factor of 1 + ¢, wheree is the error parameter at random from each copy.
(intuitively, the higher the error, the noisier the auxjia « Project the copies ol; andVa, respectively, to gef;
information and the lower the re-identification rate). Fig and Bs.

shows how re-identification rate decreases with noise.lReca It should be clear that Procedure B produces more plau-

that we allow at most one maich, and so the attackefj e edges than even the best concrete link prediction
never makes an error as long as his assumptions about thg, o rithm. If the link prediction algorithm igerfect i.e., if
imprecision of his auxiliary information are correct. the edge additions accomplish the reverse of random edge

This experiment establishes that seed identification igl€letion, then the two procedures are more or less equivalen
feasible in practice. If anything, it underestimates hosyea (£’ in Procedure A corresponds # in Procedure B:E
this is to do in the real world, where the attacker can use aux@nd E” in Procedure A correspond to the two perturbed
iliary information other than degrees and common-neighbof©Pies in Procedure B). If the link prediction is not perfect
counts. Searching based on the structure of the target uset§€n Procedure B is better in the sense that it leads to
graph neighborhoods allows re-identification with just two ~more realistic noise, and thus makes the task of our de-
even a single node, although this is algorithmically comple a@nonymization algorithm harder.
This leaves the question of what fractigh of edges
6.2. Propagation to remove to get an edge overlap @f. The fraction of
common edges il — 3)2, while the fraction of edges left

. . . . p— 2
6.2.1. Robustness against perturbation and seed selec- in at least one of the copies Is- 5, giving (1_53 =ag,

tion. The most remarkable feature of our propagation al-which yieldsg = };Zﬁ as the only valid solution. Note that




the edge overlap is calculated for the subgraphs formed bransition better. A run is classified as successful if it re-
the overlapping nodes. The overlap betwdenand £ is  identifies at least 1,000 nodes. Figure 3 shows the resulting
much lower. probabilities of large-scale propagation. The phase itians
Results. We investigated the impact that the number ofis somewhat less sharp than might appear from Figure 2,
seeds has on the ability of the propagation algorithm taalthough the window is almost completely in the range
achieve large-scale re-identification, and also its rofesst  [15,45].
to perturbation. It must be noted that the number of seeds required to
Figure 2 shows that the selection of seeds determinesigger propagation depends heavily on the parameters of
whether propagation step dies out or not (cf. phase transthe graph and the algorithm used for seed selection. We
tion [Wei]), but whenever large-scale propagation has beetherefore caution against reading too much into the numbers
achieved, the re-identification rate stays remarkablyteoris  What this experiment shows is that a phase transition does
We find that when the algorithm dies out, it re-identifies nohappen and that it is strongly dependent on the number of

more than a few dozen nodes correctly. seeds. Therefore, the adversary can collect seed mappings
incrementally until he has enough mappings to carry out
100 large-scale re-identification.
T o0 Figure 4 shows that imprecision of the auxiliary infor-
£ nl mation decreases the percentage of nodes re-identified, but
£3 5 ¢+ 0 cannot prevent large-scale re-identification.
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Figure 2. The fraction of nodes re-identified depends 0 ' ' i
sharply on the number of seeds. Node overlap: 25%; 0.25 0.5 0.75 1
Edge overlap: 50% Edge overlap

100 - Figure 4. Effect of noise. Node overlap: 25%; Number
2 90 of seeds: 50
% 80 A
g 70 6.2.2. Mapping between two real-world social networks.
3 60 As our main experiment, we ran our propagation algorithm
'Q 50 - with the graph of Flickr as the auxiliary information and the
5 40 - anonymous graph of Twitter as the target.
2 1 Ground truth. To verify our results, we had to determine
g 20 - the ground truth i.e,, the true mapping between the two
*E 10 4 graphs. We produced ground-truth mappings based on exact
=, matches in either theisername, or name field. Once a
15 20 95 30 35 a0 a5 match is _found, we compufce a score based on a variety
of heuristics on all three fieldsugername, name and
Number of seeds location). If the score is too low, we reject the match as
spurious.
Figure 3. The phase transition in more detail. Node « For usernames, we use the length to measure the likeli-
overlap: 25%; Edge overlap: 50% hood that a username match is spurious. The rationale

is that a username such as “tamedfalcon213” is more
We performed a further experiment to study the phase likely to be identifying than “joe”.



« For names, we use the length of the names, as well ag. Conclusion
the frequency of occurrence of the first and last names.

Rarer names indicate a strlor.lger match. The main lesson of this paper is that anonymity is not
. Fgglocampns, we use heuristics such as two-letter statg, ficient for privacy when dealing with social networks. We
abbreviations. _ _ developed a generic re-identification algorithm and showed
This resulted in around 27,000 mappings, which Weyha¢ it can successfully de-anonymize several thousarmd use
will call u(G). S_mce thgse mappings were computed withj, the anonymous graph of a popular microblogging ser-
a completely different information than used by the de-yice (Twitter), using a completely different social netkor
anonymization algorithm, errors in the ground truth caryonl (Flickr) as the source of auxiliary information.
degrade the reported performance of our de-anonymization Our experiments underestimate the extent of the privacy

algp_rithm. we pick_ed a ra_”dom sample of the ”_‘appings anﬁjisks of anonymized social networks. The overlap between
verified by human inspection that the error rate is well undelcl-Witter and Flickr membership at the time of our data

9 . X o
5%. collection was relatively small. Considering only the sser

Of course, some of those who use both Flickr and TW|tterWho supplied their names (about a third in either network),

may use completely different usernames and names on ti'f

two S(_arvices gnd are thus not included in our ground—trutr?n Flickr, while 5% of the names associated with Flickr ac-

laorithm. When it d et d bel Q:founts occur in Twitter. Since human names are not unique,
.Our?%ﬁ” m. enl " 0€s re::ogmze 0 gof efhas €l0NGis overestimates the overlap in membership. By contrast,
Ing to the same user, It Is rarely wrong, and, furthermore, It 1o, ot Facebook users are also present on MySpace [Pat07].

can successfully re-identify thousands of users. As social networks grow larger and include a greater frac-

It is possible that our algorithm has a better performanc%on of the population along with their relationships, the

(r:gdtzg Ilq:%c:eei(;vrzelr: tl:]see?src\)/vr?c()jimziz SPS?yr\:gtitc:Esc;nmoéleéverIap increases. Therefore, we expect that our algorithm
: AMple, " ®an achieve an even greater re-identification rate on larger
on both websites might be habitual early adopters of we etworks

services. Thus, the numbers below must be interpreted wit . . .
P We demonstrated feasibility of successful re-identifaati

caution. d solely on the network topol d ing that
Our seed mapping consisted of 150 pairs of nodes select Sed solely on the network topology and assuming tha
the target graph is completely anonymized. In reality,

domly f , with th traint that the d f . .
randomly fromy.(G), wi © constraint hat mhe degree o gnonym|zed graphs are usually released with at least

h d node in th ili his at least 80. M ; . . .
each Mmapped noge in e auxriary graph 1S at 'eas or ome attributes in their nodes and edges, making de-

opportunistic seed selection can lower the number of seedd N .
required. anonymization even easier. Furthermore, any of the thou-

The accuracy of our algorithm op(G) (weighted by sands of third-party application developers for popular on
centrality—see Section 4.5) is summarized below: line social networks, the dozens of advertising companies,
. 30.8% of the mappings were re-identified correctly governments who have.access to telephone call logs, and
12.1% were identified incorrectly, and 57% were not2"Yone who can compile aggregated grap_hs qf the fqrm
identified ' described in Section 2 have access to auxiliary information

. 41% of the incorrectly identified mappings% overall) which is much richer than what we used in our experiments.

were mapped to nodes which are at a distance 1 frorr'?‘t the same time, an ever growing number of third parties

the true mapping. It appears likely that human inteIIi_get access to sensitive social-network data in anonymized
gence can be uséd to complete the de-anonymizatio rm. These two trends appear to be headed for a colli-
in many of these cases slon resulting in major privacy breaches, and any potential

. 55% of the incorrectly identified mappings6.¢% solution would appear to necessitate a fundamental shift

in business models and practices and clearer privacy laws
overall) were mapped to nodes where the same geo- P P y

graphic location was reportédThus, even when re- on tgre]d;sxugj)ect of Personally Identifiable Information (see
identification does not succeed, the algorithm can ofterﬁo‘pp '
identify a node as belonging to a cluster of similar Acknowledgements.The first author is grateful to Cynthia
nodes, which might reveal sensitive information (recallDwork for introducing him to the problem of anonymity
the discussion in Section 4.4). in social networks. Kamalika Chaudhuri deserves special
« The above two categories overlap; of all the incorrectthanks for collaborating on an earlier unpublished work on
mappings, onh27% (or 3.3% overall) fall into neither  social network anonymity; some of the broader themes car-
category and are completely erroneous. ried over to this paper. Over the last year and a half, we have
. . _ had many interesting discussions with Ilya Mironov, Frank
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— G: a graph containing nodds and edged”



— X: a set of node attributes « Account number, credit or debit card number,

— Y: a set of edge attributes in combination with any required security
« X: a node attribute, part ot. code, access code, or password that would per-
« X[v]: the value of the attribut& on the nodev mit access to an individual’s financial account.
« Y: an edge attribute, part f. Two points are worthy of note. First, the spirit of the
« Yle]: the value of the attribut®” on the edge: terminology is to capture the types of information that
« PP: a privacy policy are commonly used for authenticating an individual. This
Sanitized and auxiliary data reflects the bill’s intent to deter identity theft. Conseniy

« Ssan: a sanitized social network, defined analogously.data such as emalil addregses and telephqn(_e numbers do not
« Gsan, a sanitized graph, containingsan C V and fall undgr th_e scope Qf this I_a}w. Second, it is the per_sonal
E ; ; information itself that is sensitive, rather than the fduzttit
san, a nhoisy version oft/ : ? : IV, X ) i
« Saux: the attackers aggregate auxiliary information, is possible to assomatelsens!tlve information with annlqiﬁn _
consisting of The second context in which the term “personally identi-
fiable information” appears is the privacy law. In the United
States, the Privacy Act of 1974 [UniO5a] regulates the
collection of personal information by government agencies
- C T . but there is no overarching law regulating private entities
« Aux[X, ]: the probability distribution of the attacker's At jeast three such acts introduced in 2005 failed to pass:
knowledge of the value of the attribufé on the node  he privacy Act of 2005 [Uni05d], the Consumer Privacy

- Gaux = (Vaux, Paux)
— Aux = Auxx U Auxy, (probabilistic) auxiliary
information about node and edge attributes

v o ) Protection Act of 2005 [UniO5b], and the Online Privacy

o Aux[Y,e]: likewise for edge attributes Protection Act of 2005 [Uni05c]. However, there do exist

Re-identification laws for specific types of data such as the Video Privacy

e u(.): ground truth, a 1-1 mapping betweggyx and  Protection Act (VPPA) [UniO2a] and the Health Insurance
Vsan Privacy and Accountability Act (HIPAA).

e fi(.,.): a probabilistic mapping output by a re- The language from the HIPAA Privacy Rule [UniO2b] is
identification algorithm representative:

« u(.): a specific mapping betweelaux and Vsan Individually identifiable health information is in-
sampled frony formation

« v(v): node centrality (Section 4.5). [...]

« av: node overlap betweelaux and Vsan (Section 1) That identifies the individual; or

6.2.1)
o ap: edge overlap betweehyyyx and Esgn projected
on Vmapped (Section 6.2.1) - o
e: noise parameter (for seed identification)
(: noise parameter (for propagation; Section 6.2.1)

2) With respect to which there is a reasonable
basis to believe the information can be used
to identify the individual.

The spirit of the law clearly encompasses deductive dis-
closure, and the term “reasonable basis” leaves the defining
. line open to interpretation by case law. We are not aware of
Appendix B. . ) any court decisions that define identifiability.

On “Personally Identifiable Information” Individual U.S. states do have privacy protection laws that
apply to any operator, such as California’s Online Privacy

“Personally identifiable information” is a legal term used Protection Act of 2003 [Cal03]. Some countries other than
in two related but distinct contexts. The first context is athe United States have similar generic laws, such as Canada’
series of breach-disclosure laws enacted in recent years Personal Information Protection and Electronic Documents
response to security breaches involving customer data th@ct (PIPEDA) [Par00]. The European Union is notorious for

could enable identity theft. the broad scope and strict enforcement of its privacy laws—
California Senate Bill 1386 [cal02] is a representativethe EU privacy directive defines “personal data” as follows
example. It defines “personal information” as follows: [Eur9s]:
[An] individual's first name or first initial and last any information relating to an identified or identi-
name in combination with any one or more of the fiable natural person [...]; an identifiable person is
following data elements, when either the name or one who can be identified, directly or indirectly, in
the data elements are not encrypted: particular by reference to an identification number
« Social security number. or to one or more factors specific to his physical,
« Driver’s license number or California Identi- physiological, mental, economic, cultural or social

fication Card number. identity.”



It is clear from the above that privacy law, as opposedcases, an entity is associated with a real-world person, but
to breach-disclosure law, in general interprets perspnalldoes not have to bee(g, consider a political campaign
identifiable information broadly, in a way that is not couvére which has a YouTube account and a Twitter account). The
by syntactic anonymization. This distinction appears to beconcept of entities also allows us to capture information
almost universally lost on companies that collect and sharghich is characteristic of a user across multiple networks—
personal information, as illustrated by the following Sena for example, an unusual username—but is not related to
Committee testimony by Chris Kelly, Chief Privacy Officer anything in the real world.
of Facebook [kel08]: In our model, nodes are purely collections of their at-

The critical distinction that we embrace in our tributes, and tadentify a node simply means to learn the
policies and practices, and that we want our users  entity to which the node belongs, whether this entity is a
to understand, is between the use of personal  Single person, a group, or an organization. We assume that

information for advertisements in personally- correctly associating a node with the corresponding entity
identifiable form, and the use, dissemination, or constitutes a breach of anonymity. The question of whether
personally-identifiable form. Ad targeting that model.

shares or sells personal information to advertisers .

(name, email, other contact oriented information) ~ Appendix D.

without user control is fundamentally different Challenges of defining privacy

from targeting that only gives advertisers the abil-

ity to present their ads based on aggregate data. The fact that we are dealing with non-relational data

Finally, it is important to understand that the term “per- makes it difficult to come up with a comprehensive defi-

sonally identifiable information” has no particular techni Nition of privacy in social networks. In general, one would
cal meaning. Algorithms that can identify a user in an“k_e to say t_h_at propertles_o_f individual nodes Sh.OUI.d be
anonymized dataset are agnostic to the semantics of tHyivacy-sensitive and thus difficult to learn from the sizeid

data elements. While some data elements may be unique‘1 twork, while aggregate properties should be learnable.
) ) . ) s 3 . ” H nn 9"
identifying on their own,any element can be identifying ut what counts as a "property of an individual node?” A

in combination with others. The feasibility of such re- Natural candidate is any property about-aeighborhood

identification has been amply demonstrated by the AO for some small (for instance, a property that a user
privacy fiasco [BZ06], de-anonymization of the Netflix Prize as 3_d|fferent paths of length 2 to a known Al-Qaeda
dataset [NSO08], and the work presented in this paper. It igperatwe). Unfortunat_ely, there does _not seem to be an
regrettable that the mistaken dichotomy between pers;onallelegant way of choos_ln@ because somal-nﬂeMork graphs
identifying and non-personally identifying attributessha "2ve @ very small diameter due to the "six degrees of

crept into the technical literature in phrases such as uasseparation” phenomenon [TM&9].
P P . A related approach is differential privacy [Dwo06], which

identifier.”

! " in the social-network context would require that the graph
. look roughly the same if any single node is removed. It

Appendix C. is not obvious how to define node removal, and far from

“Identity” in social networks clear how to achieve differential privacy on graph-struetl
data, because aggregate properties of a graph can change
The correspondence between accounts or profiles ( substantially with the removal of a single node.
network nodes) and real-world identities varies greatyfr Even when the privacy policy is defined as a simple
social network to social network. A wired telephone maylabeling of attributes (as we do in Section 4.4), the poliag c
be shared by a family or an office, while mobile phones arebe global or granular. With a global policy, the same privacy
much more likely to belong to a single person. Some onlindabel applies to a given attribute in every nogeg( email
social networks such as Facebook attempt to ensure thatdresses are either public for all members, or private for
accounts accurately reflect real-world information [Tg¢08 all members). Similarly, the edges in the network are either
while others such as MySpace are notoriously lax [MaaO7]all public, or all private. With granular policies, the paisy
Fake MySpace profiles have been created for pets ansktting can be different for each edge and each attribute of
celebrities, and a user may create multiple profiles witheach node.
contradictory or fake information. A global policy is sufficient most of the time. In most
In this paper, we eschew an explicit notion of identity contexts, the network operator promises users that none
and focus instead omntities which are simply sources of their data will be released in a personally identifiable
of social-network profile information that are consistentway, implying a privacy policy where all edges and all
across different networks and service providers. In mosattributes are private. In other contexts, some attribuonight



be intuitively understood to be publie.g, node degree) and query only forward links. Therefore, we can expect to
others private. recover the strongly-connected component (SCC) fully and
Many online social-network services such as Facebookhe weakly connected component (WCC) incompletely.
allow users to configure their individual privacy policy it We crawled the entire SCC of Twitter, subject to the
a high level of granularity. This might become a commoncaveat that the Twitter API for discovering relationships
practice in the future, but so far it appears that the vast mais indirect; in particular, we cannot discover users whose
jority of users do not change their default settings [GAHO5] activity on the website is “protectedf.e., viewable by
[KWO08]. There is also some ambiguity in modeling userfriends only. Interestingly, the size of the Twitter user
preferences as formal privacy policies: for instance, ayeed population, at least as reflected in the connected component
may be considered public by one endpoint and private byf regular users, turned out to be much smaller than was
the other. being reported in the media at the time of our crawl. It
To keep the model simple and tractable, we do not usés also worth noting that since then Twitter has introduced
richer formalisms which may be suitable for some situationscrippling rate limitations on its API, which make a large-
For example, a multi-graph is a better model for socialscale crawl infeasible.
networks representing phone calls between individuals. We We could not crawl the entire SCC of the Flickr graph due
ignore the complex structure of node and edge attributes thao its size. We crawled it in a priority-queue fashion, giyin
may be relevant to privacy, such as “X knows Y through Z.” the highest priority to the nodes with the highest number of
We only use “public” and “private” as privacy labels, even incoming edges from the already crawled nodes. Comparing
though some networks allow more levels such as “viewabl@ur numbers with [MMG07], we conclude that we have,

by friends,” or even friends of friends. in fact, recovered most of the SCC.

Finally, the authors of [MMG07], who kindly provided
Appendix E. with us with the LiveJournal data, report that their crawl
Measuring the effect of perturbation covers the vast majority of the users in LiveJournal's WCC.

The Jaccard Coefficient can be used to measure the
amount of perturbation introduced to the sanitized graph
Ssan during the release process:

S uevgn V(WC)
> wcvean V()

wherev(u) is the centrality of the node and the Jaccard
CoefficientJC(u) is defined in this context as follows:

{v e V:N(E(u,v) A El(u, v)) V (E(v,u) /\NE’(U,U))H
[{veV:E(u,v)V E(u,v) V E(v,u) V E(v,u)}|

whereV = Vsan and E = Esgn. In the above expres-
sion, the numerator counts the number of edges that are left
unchanged infsgn, taking directionality into account. The
denominator counts all edges that exist in either diredtion
either E, or Esgn.

A more obvious measure that simply counts the number
of edges added or removed, as a fraction of the total
number of edges, would ignore the effect of perturbation on
individual nodes. By contrast, our measure takes this into
account, weighing nodes in proportion to their centrality i
the network (this is the purpose of thefactor).

Appendix F.
Notes on data acquisition

Typically, a network crawl can only recover the giant
connected component. Both Twitter and Flickr allow to



